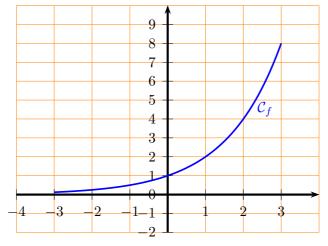
Exercice 1: Compléter le tableau de valeurs et représenter graphiquement la fonction $f(x) = 2^x$.

x	2^x
-3	0.125
-2	0.25
-1	0.5
0	1
1	2
2	4
3	8



Exercice 2 : Résoudre les équations :

1. $2^{6x-10}=2^{3x-7}$. On a deux puissances d'un même nombre, on peut directement résoudre :

$$2^{6x-10} = 2^{3x-7}$$

$$6x-10 = 3x-7$$

$$3x-10 = -7$$

$$3x = 3$$

$$x = 1$$
Exposants égaux
$$-3x$$

$$+10$$

$$\div 3$$

2. $3^{x-2} = 9^x$. Ici on reconnaît que $9 = 3^2$. Donc $9^x = \left(3^2\right)^x = 3^{2x}$. On peut donc écrire :

$$3^{x-2} = 3^{2x}$$

$$x-2 = 2x$$

$$-2 = x$$
Exposants égaux
$$-x$$

Exercice 3 : Compléter le tableau (6 cases à compléter)

La formule donnée est la valeur de C_n en fonction de C_0 , t et n. Elle permet de remplir les deux premières lignes : $C_n = C_0 \times (1+t)^n$.

Pour remplir les lignes 3–4, on peut exprimer C_0 en fonction du reste :

$$C_n = C_0 \times (1+t)^n$$

$$\frac{C_n}{(1+t)^n} = C_0$$
 $\div (1+t)^n$

Pour remplir les lignes 5-6, on peut exprimer t en fonction du reste :

$$C_n = C_0 \times (1+t)^n$$

$$\frac{C_n}{\frac{C_0}{C_0}} = (1+t)^n$$

$$\sqrt[n]{\frac{C_n}{C_0}} = 1+t$$

$$\sqrt[n]{\frac{C_n}{C_0}} - 1 = t$$

$$\div C_0$$
Racine *n*-ième (car $\frac{C_n}{C_0} > 0$)

Capital initial C_0	Taux annuel t	Durée n	Valeur acquise en euros C_n
1000€	2%	1 an	$1000 \times (1+0,02)^1 = 1020 $
1000€	2%	4 ans	$1000 $ $\times (1+0,02)^4 \approx 1082,43 $ \in
$\frac{1530\mathfrak{C}}{(1+0,02)^1} = 1500\mathfrak{C}$	2%	1 an	1530€
$\frac{2381,35\cancel{\text{e}}}{(1+0,02)^4} \approx 2200\cancel{\text{e}}$	2%	4 ans	2381,35€
1000€	$\sqrt[1]{\frac{1040\cancel{e}}{1000\cancel{e}}} - 1 = 0,04 = 4\%$	1 an	1040€
1000€	$\sqrt[4]{\frac{2812,41\cancel{C}}{1000\cancel{C}}} - 1 \approx 0,295 = 29,5\%$	4 ans	2812,41€

Exercice 4 : Écrire sous forme la plus simple possible (sans log ni puissance) :

Je rappelle tout d'abord les formules utiles ici : (i) $\log = \log_{10}$; (ii) $\log_b(b^x) = x$; (iii) $b^{\log_b(x)} = x$ quand x > 0

1.
$$\log_4(4) = \log_4(4^1) = 1$$
 (ii)

2.
$$\log_2(4) = \log_2(2^2) = 2$$
 (ii)

3.
$$\log(100000000) = \log(10^8) = 8$$
 (i) et (ii)

4.
$$\log_3(\sqrt{3}) = \log_3\left(3^{\frac{1}{2}}\right) = 0,5$$
 (ii)

5.
$$\log_{42}(\sqrt[5]{42}) = \log_{42}\left(42^{\frac{1}{5}}\right) = \frac{1}{5}$$
 (ii)

6.
$$3^{\log_3(10)} = 10$$
 (iii)

7.
$$10^{\log(-4)}$$
 n'existe pas car $-4 < 0$

8.
$$10^{\log(42)} = 42$$
 (i) et (iii)

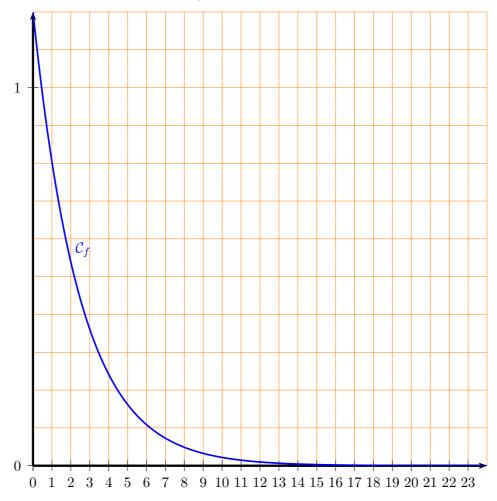
9.
$$8^{\log_2(7)} = (2^3)^{\log_2(7)} = 2^{3\log_2(7)} = (2^{\log_2(7)})^3 = 7^3 = 343$$
 (iii)

Exercice 7: Avec algorithme.

1. Pour le tableau de valeurs, on peut faire comme à l'exercice 1, par exemple :

t	0	2	4	6	8	10	12	14	16	18	20	22	24
$1,2 \times 0,67^t$	1,2	0,54	0,24	0,11	0,05	0,02	0,01	0,004	0,002	0,0009	0,0004	0,0002	0,0008

On peut donc choisir comme échelle 1 cm pour 2 h et 1 cm pour 0,1 $g.L^{-1}$ pour y voir clair (ce qui donne un graphique de 12 cm par 12 cm).



2. On peut maintenant exécuter l'algorithme en suivant pas à pas les valeurs de chaque variable en fonction des lignes. Le tableau de suivi de variables est :

	C	t		
Ligne 1	0,5	-		
Ligne 2	0,5	0		
Ligne 3	Test vrai o	ear $1, 2 \times 0, 67^0 = 1, 2 \ge 0, 5$, on va l.4		
Ligne 4	0,5	1		
Ligne 3	Test vrai car $1, 2 \times 0, 67^1 = 0, 804 \ge 0, 5$, on va l.4			
Ligne 4	0,5	2		
Ligne 3	Test vrai car $1, 2 \times 0, 67^2 \approx 0, 54 \ge 0, 5$, on va l.4			
Ligne 4	0,5	3		
Ligne 3	Test faux car $1, 2 \times 0, 67^3 \approx 0, 36 < 0, 5$, on va l.6			
Ligne 6	On affiche la valeur $t = 3$.			
	FIN			

En rentrant C=0,2 à la ligne 1, il faut continuer un peu, et l'algorithme affiche la valeur de t=5.

3. C'est le même algorithme, il faut simplement rentrer C = 0, 06. En proglab, cela donne le programme suivant. Le médicament sera éliminé au bout de 8 heures.

```
VARIABLES
            C EST_DU_TYPE NOMBRE
3
            t EST_DU_TYPE NOMBRE
4
   DEBUT_ALGORITHME
5
            LIRE C
6
            t PREND_LA_VALEUR O
7
            TANT_QUE (1.2*pow(0.67,t) >= C) FAIRE
8
                    DEBUT_TANT_QUE
9
                    t PREND_LA_VALEUR t+1
10
                    FIN_TANT_QUE
11
            AFFICHER* t
12
   FIN_ALGORITHME
```

 $Listing \ 1-{\tt http://proglab.fr/eie956} \ ou \ {\tt http://www.barsamian.am/2020-2021/S5P6/medicament.alg}.$