MATHEMATICS 3 PERIODS PART A

DATE: $12^{\text {th }}$ June 2023, Afternoon

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

Examination without technological tool
Pencil for the graphs
Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.

Determine and interpret graphically:
a) the average rate of change of the function f from $x_{1}=1$ to $x_{2}=2$.

2 marks
3 marks
2) Consider a differentiable function f. The figure below shows the graph of its derivative f^{\prime} for $-2.1 \leq x \leq 2$.

For each of the following statements justify whether it is true or false.
a) The function f is decreasing for $-1 \leq x \leq 1$.
b) The function f has a minimum at $x=-2$.
c) There is a horizontal tangent to the graph of f at the point where $x=1$.
d) The slope of the tangent to the graph of f at the point where it intersects the y-axis is equal to 2 .
e) The graph of f has three horizontal tangents for $-2.1 \leq x \leq 2$.
b) the rate of change of the function f at $X_{1}=1$.

Marks
Page 1/4

1) The diagram below shows the graph of a function f and its derivative f^{\prime}.

PART A	Page 2/4	Marks

3) Consider the functions f and F defined by

$$
f(x)=4 x^{3}+3 x^{2} \text { and } F(x)=x^{4}+x^{3}+5 .
$$

a) Show that F is a primitive function of f.

2 marks

3 marks
4) The figure below shows the graph of a function f and two regions S_{1} and S_{2} bounded by the graph of f and the x-axis.
The graph is symmetric with respect to the origin of the coordinate system.

You are given that $\int_{-4}^{0} f(x) d x=7$.
a) Interpret the integral $\int_{-4}^{0} f(x) d x$ graphically.
b) Determine

1. $\int_{0}^{4} f(x) d x$.
2. $\int_{-4}^{4} f(x) d x$.
3. the area of the region S_{2}.

PART A Page 3/4	Marks
5) A swimming pool is being emptied and the volume of water that remains can be modelled by the function V given by $V(t)=5000 \cdot 0.60^{t}, \quad t \geq 0,$ where time t is measured in hours and $V(t)$, measured in litres, is the volume of water, remaining at a time t. Emptying the pool starts at the time $t=0$. a) Determine the volume of water in the pool at the start and after 1 hour. b) Calculate the percentage rate at which the volume of water decreases per hour. c) Explain what the model tells us about the volume of water remaining after a very long time. 6) a) Calculate in how many ways the letters of the word PARIS can be ordered. b) Calculate how many "words" (not necessarily having a meaning) of 3 different letters you can write using letters of the word PARIS. 7) A survey of 100 students enrolling at a university, shows that - 45 speak English - 40 speak French - 35 speak German - 20 speak both English and French - 23 speak both English and German - 19 speak both French and German - 12 speak all three languages. Using a Venn diagram or otherwise, determine the probability that a randomly selected student from these 100 students speaks only one of these three languages.	2 marks 2 marks 1 mark 2 marks 3 marks 5 marks

	PART A Page 4/4	Marks
	Applicants for jobs in a large company must sit an aptitude test. They are either - accepted with a probability of $\frac{1}{5}$ or - rejected with a probability of $\frac{1}{2}$ or - retested with a probability of $\frac{3}{10}$. When they are retested, there are just two outcomes, accepted with a probability of $\frac{2}{5}$ or rejected with a probability of $\frac{3}{5}$. a) Draw a tree diagram to illustrate the outcomes. b) Determine the probability that a randomly selected applicant is accepted.	2 marks 3 marks
	A biased coin is thrown several times. At each throw, the probability of getting a head is $\frac{1}{3}$. a) Is this a Bernoulli process? Justify your answer. b) The coin is thrown 3 times. Calculate the probability of getting exactly 2 heads. c) The coin is thrown 60 times. Calculate the expected value for the number of heads.	2 marks 2 marks 1 mark
10)	A machine produces steel balls. The diameter of the balls is normally distributed with mean $\mu=18.0 \mathrm{~mm}$ and standard deviation $\sigma=0.5 \mathrm{~mm}$. A ball is selected at random. a) Determine the probability that its diameter is between 17.0 mm and 19.0 mm . b) Determine the probability that its diameter is between 17.0 mm and 18.5 mm . c) A batch of 400 steel balls is selected at random from this production and the diameter of each ball is measured. If the diameter of a ball is less than 17.0 mm , it will be rejected. Estimate how many balls will be rejected.	1 mark 2 marks 2 marks

