

MATHEMATICS 3 PERIODS PART A

DATE: 12th June 2023, Afternoon

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

Examination without technological tool

Pencil for the graphs

Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.

	PART A	Page 2/4	Marks
3)	Consider the functions <i>f</i> and <i>F</i> defined by $f(x) = 4x^3 + 3x^2$ and $F(x) = x^4 + x^3 + 5$.		
	a) Show that <i>F</i> is a primitive function of <i>f</i> .		2 marks
	b) Calculate $\int_{1}^{2} f(x) dx$.		3 marks
4)	The figure below shows the graph of a function <i>f</i> and two regions S_1 and S_2 bounded by the graph of <i>f</i> and the <i>x</i> -axis. The graph is symmetric with respect to the origin of the coordinates system.	ons inate	
	You are given that $\int_{-4}^{0} f(x) dx = 7$.		
	a) Interpret the integral $\int_{-4}^{0} f(x) dx$ graphically.		2 marks
	b) Determine 1. $\int_0^4 f(x) dx$. 2. $\int_{-4}^4 f(x) dx$.		3 marks
	3. the area of the region S_2 .		

	PART A	Page 3/4	Marks
5)	A swimming pool is being emptied and the volume of water that remains can be modelled by the function <i>V</i> given by		
	$V(t) = 5000 \cdot 0.60^{t}$, $t \ge 0$,		
	where time t is measured in hours and $V(t)$, measured in litres, is the volume of water, remaining at a time t .		
	Emptying the pool starts at the time $t = 0$.		
	a) Determine the volume of water in the pool at the start and after 1 hour.		2 marks
	b) Calculate the percentage rate at which the volume of wate decreases per hour.	r	2 marks
	c) Explain what the model tells us about the volume of water after a very long time.	remaining	1 mark
6)) a) Calculate in how many ways the letters of the word PARIS can be ordered.		2 marks
	b) Calculate how many "words" (not necessarily having a mean of 3 different letters you can write using letters of the word	aning) PARIS.	3 marks
7)	A survey of 100 students enrolling at a university, shows that		
	 45 speak English 40 smark English 		
	 40 speak French 35 speak German 		
	 20 speak both English and French 		
	 23 speak both English and German 40 speak both Erench and German 		
	 19 speak both French and German 12 speak all three languages. 		
	using a Venn diagram or otherwise, determine the probability randomly selected student from these 100 students speaks or	that a nly one of	5 marks
	these three languages.	-	

	PART A	Page 4/4	Marks
8)	Applicants for jobs in a large company must sit an aptitude te They are either	st.	
	• accepted with a probability of $\frac{1}{5}$ or		
	• rejected with a probability of $\frac{1}{2}$ or		
	• retested with a probability of $\frac{3}{10}$.		
	When they are retested, there are just two outcomes, accepted with a		
	probability of $\frac{2}{5}$ or rejected with a probability of $\frac{3}{5}$.		
	a) Draw a tree diagram to illustrate the outcomes.		2 marks
	b) Determine the probability that a randomly selected applica accepted.	ant is	3 marks
9)	A biased coin is thrown several times.		
	At each throw, the probability of getting a head is $rac{1}{3}$.		
	a) Is this a Bernoulli process? Justify your answer.		2 marks
	 b) The coin is thrown 3 times. Calculate the probability of getting exactly 2 heads. 		2 marks
	 c) The coin is thrown 60 times. Calculate the expected value for the number of heads. 		1 mark
10)	A machine produces steel balls. The diameter of the balls is normally distributed with mean $\mu = 18.0$ mm and standard deviation $\sigma = 0.5$ mm. A ball is selected at random.		
	a) Determine the probability that its diameter is between 17.0 mm and 19.0 mm.		1 mark
	 b) Determine the probability that its diameter is between 17.0 mm and 18.5 mm. 		2 marks
	 c) A batch of 400 steel balls is selected at random from this p and the diameter of each ball is measured. If the diameter of a ball is less than 17.0 mm, it will be rejected. 	roduction cted.	2 marks