MARKING SCHEME

MATHEMATICS 3 PERIODS PART A

DATE : $12^{\text {th }}$ June 2023 Afternoon

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORIZED MATERIAL:

Examination without technological tool
Pencil for the graphs
Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used

| | Page $1 / 12$ | Marks |
| :--- | :--- | :--- | :--- |
| 1)The diagram below shows the graph of a function f and its
 derivative f^{\prime}. | | |
| Determine and interpret graphically:
 a) the average rate of change of the function f from $x_{1}=1$ to $x_{2}=2$. | | |

PART A		Page $\mathbf{2 / 1 2}$
	Marks	
b) the rate of change of the function f at $x_{1}=1$.	3 marks	
The rate of change of the function f at $x_{1}=1$ equals $f^{\prime}(1)$		
From the graph: $f^{\prime}(1)=-2$.		
It is the slope of the tangent to the graph of f at the point P_{1} where $x_{1}=1$.		
Translating the rate of change at $x_{1}=1$ by $f^{\prime}(1): 1$ mark Reading $f^{\prime}(1): 1$ mark Interpreting graphically: 1 mark		

PART A			
		Page 4/12	Marks
3) Consider the functions f and F defined by $f(x)=4 x^{3}+3 x^{2} \text { and } F(x)=x^{4}+x^{3}+5$ a) Show that F is a primitive function of f.			2 marks
$F^{\prime}(x)=\left(x^{4}+x^{3}+5\right)^{\prime}=4 x^{3}+3 x^{2}=f(x)$ Hence F is a primitive function of f.			
b) Calculate $\int_{1}^{2} f(x) d x$.			3 marks
F being a primitive of f, the function G defined by $G(x)=x^{4}+x^{3}$ is also a primitive function of f. Hence $\int_{1}^{2} f(x) d x=\int_{1}^{2}\left(4 x^{3}+3 x^{2}\right) d x=\left[x^{4}+x^{3}\right]_{1}^{2}=(16+8)-(1+1)=22$. Note: Using F as a primitive of f when calculating the integral is also accepted.	F being a primitive of f, the function G defined by $G(x)=x^{4}+x^{3}$ is also a primitive function of f. Hence $\int_{1}^{2} f(x) d x=\int_{1}^{2}\left(4 x^{3}+3 x^{2}\right) d x=\left[x^{4}+x^{3}\right]_{1}^{2}=(16+8)-(1+1)=22$. Note: Using F as a primitive of f when calculating the integral is also accepted.		
Writing correctly the integration: 2 marks Calculating the numerical value: 1 mark			

PART A			
		Page 5/12	Marks
4) The figure below shows the graph of a function f and two regions S_{1} and S_{2} bounded by the graph of f and the x-axis. The graph is symmetric with respect to the origin of the coordinate system. You are given that $\int_{-4}^{0} f(x) d x=7$. a) Interpret the integral $\int_{-4}^{0} f(x) d x$ graphically.			2 marks
$\int_{-4}^{0} f(x) d x$ is the area of the region bounded by the graph of f and the x-axes for $-4 \leq x \leq 0$, i.e. the area of S_{1}.			
b) Determine 1. $\int_{0}^{4} f(x) d x$, 2. $\int_{-4}^{4} f(x) d x$, 3. the area of the region S_{2}.			3 marks
1. $\int_{0}^{4} f(x) d x=-7$ (by symmetry of the graph with respect to the origin). 2. $\int_{-4}^{4} f(x) d x=\int_{-4}^{0} f(x) d x+\int_{0}^{4} f(x) d x=7+(-7)=0$. 3. The regions S_{1} and S_{2} are symmetric with respect to the origin. S_{2} has therefore the same area as S_{1} i.e. 7 area units.			
1 mark for each sub-question			

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

PART A		
	Page 6/12	Marks
5) A swimming pool is being emptied and the volume of water that remains can be modelled by the function V given by $V(t)=5000 \cdot 0.60^{t}, \quad t \geq 0$ where time t is measured in hours and $V(t)$, measured in litres, is the volume of water, remaining at a time t. Emptying the pool starts at the time $t=0$. a) Determine the volume of water in the pool at the start and after 1 hour.		2 marks
	$V(0)=5000 \cdot 0.60^{\circ}=5000 .$ The volume of water in the pool at the start is 5000 litres. $V(1)=5000 \cdot 0.60^{1}=3000$ The volume of water in the pool after 1 hour is 3000 litres.	
1 mark for each volume		
	b) Calculate the percentage rate at which the volume of water decreases per hour.	2 marks
	$\frac{V(t+1)}{V(t)}=\frac{5000 \cdot 0.60^{t+1}}{5000 \cdot 0.60^{t}}=0.60$. (Note: This calculation is not required) In other words: in one hour the volume of water in the pool is multiplied by 0.60 . The rate of decrease of the volume of water in the pool is therefore 40\% per hour. Note: Or use the rule $a=1+r$, where a is the base and r the rate of change.	
Explaining: 1 mark Determining the required percentage: 1 mark		
c) Explain what the model tells us about the volume of water remaining after a very long time.		1 mark
$\lim _{t \rightarrow \infty} V(t)=5000 \cdot 0=0 .$ Therefore, according to the model, there will be no water remaining in the pool after an infinite time. Notes: Other answers must be accepted. For example: there will always be a small amount of water left because the zero limit does not mean that the 0 -value is reached. It only tends towards zero. Candidates may also reflect on whether a model is realistic over an infinite time. Accept such answers even if it is not required in this question.		

PART A			
		Page 7/12	Marks
6) a) Calculate in how many ways the letters of the word PARIS can be ordered.			2 marks
The number of permutations of n distinct objects without repetition is n ! Thus the number of permutations of the 5 letters of the word PARIS is $5!=120$. The 5 letters of the word PARIS can be ordered in 120 ways.			
Writing the right formula: 1 mark Calculating: 1 mark			
b) Calculate how many "words" (not necessarily having a meaning) of 3 different letters you can write using letters of the word PARIS.			3 marks
The number of permutations of k objects from a set of n distinct objects without repetition is $\frac{n!}{(n-k)!}$. Thus the number of permutations of 3 different letters from the 5 letters of PARIS is $\frac{5!}{(5-3)!}=\frac{5!}{2!}=5 \cdot 4 \cdot 3=60$. We can write 60 "words" of 3 different letters chosen from the 5 letters of the word PARIS.			
Writing the right formula: 1 mark Calculating: 2 marks			

PART A		
	Page 8/12	Marks
7) A survey of 100 students enrolling at a university, shows that - 45 speak English - 40 speak French - 35 speak German - 20 speak both English and French - 23 speak both English and German - 19 speak both French and German - 12 speak all three languages. Using a Venn diagram or otherwise, determine the probability that a randomly selected student from these 100 students speaks only one of these three languages.		5 marks
	P (only English or only French or only German) = P (only English) $+P$ (only French) $+P$ (only German) $=$ $\frac{14}{100}+\frac{13}{100}+\frac{5}{100}=\frac{32}{100} .$ The probability that a randomly selected student from the 100 students speaks only one of the three languages equals $\frac{32}{100}=0.32$.	
	Using a correct Venn diagram (or other method): 3 marks Calculating the required probability: 2 marks	

PART A			
		Page 9/12	Marks
8) Applicants for jobs in a large company must sit an aptitude test. They are either - accepted with a probability of $\frac{1}{5}$ or - rejected with a probability of $\frac{1}{2}$ or - retested with a probability of $\frac{3}{10}$. When they are retested, there are just two outcomes, accepted with a probability of $\frac{2}{5}$ or rejected with a probability of $\frac{3}{5}$. a) Draw a tree diagram to illustrate the outcomes.			2 marks
	Let the events be: A_{1} : "accepted after the first try" R_{1} : "rejected after the first try" T_{1} : "retested after the first try" A_{2} : "accepted after the second try" R_{2} : "rejected after the second try"		
	b) Determine the probability that a randomly selected applicant is accepted.		3 marks
	$P(\text { accepted })=P\left(A_{1}\right)+P\left(T_{1}\right) \cdot P\left(A_{2} \mid T_{1}\right)=\frac{1}{5}+\frac{3}{10} \cdot \frac{2}{5}=\frac{5+3}{25}=\frac{8}{25}=0.32$ The probability that a randomly selected candidate is accepted equals $\frac{8}{25}$ or 0.32 . Note: Candidates are free to use the diagram or the formulae.		
	Using correctly the diagram or the formulae: 2 marks Calculating: 1 mark		

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

PART A		
	Page 12/12	Marks
c) A batch of 400 steel balls is selected at random from this production and the diameter of each ball is measured. If the diameter of a ball is less than 17.0 mm , it will be rejected. Estimate how many balls will be rejected.		
$P(X<17.0) \approx 0.025$		
	2 marks	
Let Y be the number of rejected balls among the 400. The number of rejected balls can be estimated by $E(Y)=n \cdot p=400 \cdot 0.025=10$.		
The number of rejected balls is estimated to be 10.		
Recognizing the binomial distribution and its parameters: 1 mark Calculating the expected value and concluding: 1 mark		

