

MARKING SCHEME

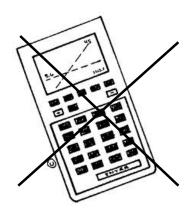
MATHEMATICS 3 PERIODS PART A

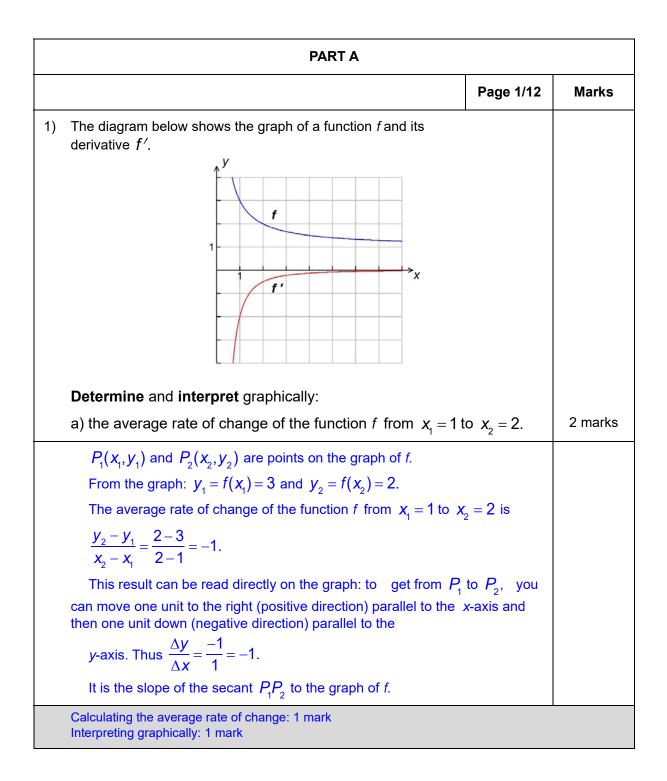
DATE: 12th June 2023 Afternoon

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORIZED MATERIAL:


Examination without technological tool

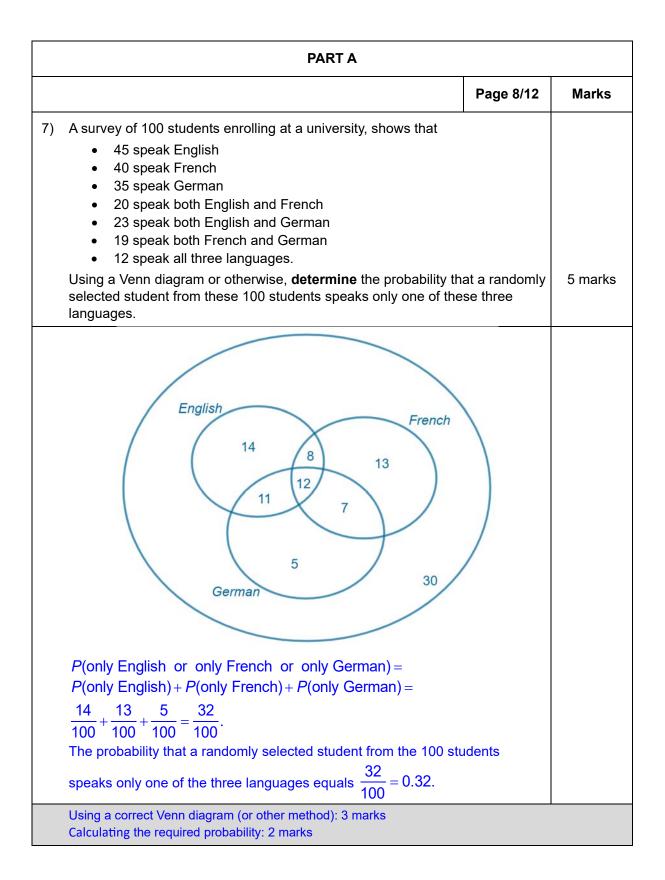

Pencil for the graphs

Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used

PART A		
	Page 2/12	Marks
b) the rate of change of the function f at $x_1 = 1$.		3 mark
The rate of change of the function <i>f</i> at $x_1 = 1$ equals $f'(1)$. From the graph: $f'(1) = -2$. It is the slope of the tangent to the graph of <i>f</i> at the point P_1 w	where $x_1 = 1$.	
Translating the rate of change at $x_1 = 1$ by $f'(1)$: 1 mark Reading $f'(1)$: 1 mark Interpreting graphically: 1 mark		


PART A		
	Page 3/12	Marks
2) Consider a differentiable function <i>f</i> . The figure below shows of its derivative f' for $-2.1 \le x \le 2$.	the graph	
For each of the following statements justify whether it is true	e or false.	5 marks
a) The function <i>f</i> is decreasing for $-1 \le x \le 1$.		
b) The function <i>f</i> has a minimum at $x = -2$.		
c) There is a horizontal tangent to the graph of f at the point where $x = 1$.	t	
d) The slope of the tangent to the graph of <i>f</i> at the point whe intersects the <i>y</i> -axis is equal to 2.	ere it	
e) The graph of f has three horizontal tangents for -2.1	$\leq x \leq 2$.	
a) FALSE: For $-1 \le x \le 1$, $f'(x) \ge 0$. Therefore <i>f</i> is increasing for $-1 \le x \le 1$.		
b) TRUE: $f'(-2) = 0$ and f' changes sign when x passes t (from $-$ to $+$). Hence f has a minimum at $x = -2$.	hrough –2	
c) TRUE: $f'(1) = 0$. There is therefore a horizontal tangent to of <i>f</i> at the point where $x = 1$.	to the graph	
d) TRUE: $f'(0) = 2$. Hence the slope of the tangent to the g at the point where it intersects the <i>y</i> -axis is equal to 2.	raph of <i>f</i>	
e) FALSE: $f'(x) = 0$ (when $-2.1 \le x \le 2$) $\Leftrightarrow x = -2$ or $x = $ graph of <i>f</i> has only two horizontal tangents for $-2.1 \le x \le $		
1 mark for each statement		

PART A		
	Page 4/12	Marks
3) Consider the functions <i>f</i> and <i>F</i> defined by		
$f(x) = 4x^3 + 3x^2$ and $F(x) = x^4 + x^3 + 5$.		
a) Show that <i>F</i> is a primitive function of <i>f</i> .		2 marks
$F'(x) = (x^4 + x^3 + 5)' = 4x^3 + 3x^2 = f(x).$ Hence <i>F</i> is a primitive function of <i>f</i> .		
b) Calculate $\int_{1}^{2} f(x) dx$.		3 marks
<i>F</i> being a primitive of <i>f</i> , the function <i>G</i> defined by $G(x) =$ a primitive function of <i>f</i> . Hence $\int_{1}^{2} f(x) dx = \int_{1}^{2} (4x^{3} + 3x^{2}) dx = \left[x^{4} + x^{3}\right]_{1}^{2} = (16)$		
Note: Using <i>F</i> as a primitive of <i>f</i> when calculating the integral is al	lso accepted.	
Writing correctly the integration: 2 marks Calculating the numerical value: 1 mark		

	PART A		
		Page 6/12	Marks
5)	 A swimming pool is being emptied and the volume of water that remains can be modelled by the function V given by 		
	$V(t) = 5000 \cdot 0.60^{t}$, $t \ge 0$,		
	where time <i>t</i> is measured in hours and $V(t)$, measured in litres, is of water, remaining at a time <i>t</i> .	s the volume	
	Emptying the pool starts at the time $t = 0$.		
	a) Determine the volume of water in the pool at the start and after 1 hour.		2 marks
	$V(0) = 5000 \cdot 0.60^{\circ} = 5000.$		
	The volume of water in the pool at the start is 5000 litres.		
	$V(1) = 5000 \cdot 0.60^1 = 3000.$		
	The volume of water in the pool after 1 hour is 3000 litres.		
	1 mark for each volume		
	b) Calculate the percentage rate at which the volume of water d per hour.	lecreases	2 marks
	$\frac{V(t+1)}{V(t)} = \frac{5000 \cdot 0.60^{t+1}}{5000 \cdot 0.60^{t}} = 0.60.$ (Note: This calculation is not req	quired)	
	In other words: in one hour the volume of water in the pool is		
	multiplied by 0.60. The rate of decrease of the volume of water in the pool is there 40% per hour.	efore	
	Note: Or use the rule $a = 1 + r$, where a is the base and r the rate of	change.	
	Explaining: 1 mark Determining the required percentage: 1 mark		
	c) Explain what the model tells us about the volume of water rem a very long time.	naining after	1 mark
	$\lim_{t\to\infty} V(t) = 5000 \cdot 0 = 0.$		
	Therefore, according to the model, there will be no water rema in the pool after an infinite time.	iining	
	Notes: Other answers must be accepted. For example: there will alway amount of water left because the zero limit does not mean that the 0- reached. It only tends towards zero. Candidates may also reflect on whether a model is realistic over an in Accept such answers even if it is not required in this question.	-value is	

PART A		
	Page 7/12	Marks
 a) Calculate in how many ways the letters of the word PARIS can be ordered. 		2 marks
The number of permutations of <i>n</i> distinct objects without re is <i>n</i> ! Thus the number of permutations of the 5 letters of the wor is $5! = 120$. The 5 letters of the word PARIS can be ordered in 120 way	d PARIS	
Writing the right formula: 1 mark Calculating: 1 mark		I
 b) Calculate how many "words" (not necessarily having a me of 3 different letters you can write using letters of the word 	• /	3 marks
The number of permutations of <i>k</i> objects from a set of <i>n</i> disobjects without repetition is $\frac{n!}{(n-k)!}$. Thus the number of permutations of 3 different letters from 5 letters of PARIS is $\frac{5!}{(5-3)!} = \frac{5!}{2!} = 5 \cdot 4 \cdot 3 = 60$. We can write 60 "words" of 3 different letters chosen from t 5 letters of the word PARIS.	the	
Writing the right formula: 1 mark Calculating: 2 marks		1

	PART A		
		Page 9/12	Marks
8)	Applicants for jobs in a large company must sit an aptitude test. They are either		
	• accepted with a probability of $\frac{1}{5}$ or		
	• rejected with a probability of $\frac{1}{2}$ or		
	• retested with a probability of $\frac{3}{10}$.		
	When they are retested, there are just two outcomes, accepted with	ha	
	probability of $\frac{2}{5}$ or rejected with a probability of $\frac{3}{5}$.		
	a) Draw a tree diagram to illustrate the outcomes.		2 marks
	A ₁ : "accepted after the first try" R_1 : "rejected after the first try" T_1 : "retested after the first try" A_2 : "accepted after the second try" R_2 : "rejected after the second try" A_1 1/5 A_1 1/2 R_1 3/10 1/2 R_1 3/5 R_2 b) Determine the probability that a randomly selected applicant is		2 mortis
	b) Determine the probability that a randomly selected applicant is accepted.		3 marks
	$P(\text{accepted}) = P(A_1) + P(T_1) \cdot P(A_2 T_1) = \frac{1}{5} + \frac{3}{10} \cdot \frac{2}{5} = \frac{5+3}{25} = \frac{3}{25} = 3$	$\frac{3}{5} = 0.32.$	
	The probability that a randomly selected candidate is accepted		
	equals $\frac{8}{25}$ or 0.32.		
	Note: Candidates are free to use the diagram or the formulae.		
	Using correctly the diagram or the formulae: 2 marks Calculating: 1 mark		

	PART A		
		Page 10/12	Marks
9)	A biased coin is thrown several times.		
	At each throw, the probability of getting a head is $\frac{1}{3}$.		
	a) Is this a Bernoulli process? Justify your answer.		2 marks
	Yes. We have a sequence of Bernoulli independent trials: the of the coin. Each throw of the coin is a Bernoulli trial, i.e. an experiment of has exactly two outcomes: success=head or failure=tail. The probability of success is the same at each trial: $p = \frac{1}{3}$.		
	Yes: 0.5 mark 0.5 mark for each of the three elements of the justification		
	b) The coin is thrown 3 times.		
	Calculate the probability of getting exactly 2 heads.		2 marks
	X = the number of heads.		
	X is binomially distributed with parameters $n=3$ and $p=\frac{1}{3}$		
	$P(X=2) = {\binom{3}{2}} \cdot \left(\frac{1}{3}\right)^2 \cdot \frac{2}{3} = 3 \cdot \frac{1}{9} \cdot \frac{2}{3} = \frac{2}{9}.$		
	The probability of getting exactly 2 heads equals $\frac{2}{9}$.		
	Recognizing the binomial distribution and its parameters: 1 mark Calculating the required probability: 1 mark		
	c) The coin is thrown 60 times.		
	Calculate the expected value for the number of heads.		1 mark
	Y = the number of heads. Y is binomially distributed with		
	parameters $n = 60$ and $p = \frac{1}{3}$.		
	$E(X) = n \cdot p = 60 \cdot \frac{1}{3} = 20.$ The expected value for the number of heads is 20.		

	PART A		
		Page 11/12	Marks
10)	A machine produces steel balls. The diameter of the balls is normally distributed with mean $\mu = 18.0$ mm and standard deviation $\sigma = 0.5$ mm.		
	A ball is selected at random.		
	a) Determine the probability that its diameter is between 17.0 mm and 19.0 mm.		1 mark
	X = the diameter of a ball. a) $P(17.0 \le X \le 19.0) = P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.95.$ The probability that the diameter of the ball is between 17.0 and 19.0 mm equals about 0.95 or 95 %.) mm	
	b) Determine the probability that its diameter is between 17.0 mm and 18.5 mm.		2 marks
	$P(17.0 \le X \le 18.5) = P(\mu - 2\sigma \le X \le \mu + \sigma) = P(\mu - 2\sigma \le X \le \mu + 2\sigma) - P(\mu + \sigma \le X \le \mu + 2\sigma) \approx 0.95 - (0.16 - 0.025) = 0.815.$ Or: $P(17.0 \le X \le 18.5) = P(\mu - 2\sigma \le X \le \mu + \sigma) = P(\mu - \sigma \le X \le \mu + \sigma) + P(\mu - 2\sigma \le X \le \mu - \sigma) \approx 0.68 + (0.16 - 0.025) = 0.815.$ Or: $P(17.0 \le X \le 18.5) = P(\mu - 2\sigma \le X \le \mu + \sigma) = P(\mu - 2\sigma \le X \le \mu) + P(\mu \le X \le \mu + \sigma) \approx \frac{0.95}{2} + \frac{0.68}{2} = 0.475 + 0.34 = 0.815.$ The probability that the diameter of the ball is between 17.0 and 18.5 mm equals about 0.815 or 81.5 %.) mm	
	Developing numeracy: 1 mark Calculating the required probability: 1 mark		

PART A		
	Page 12/12	Marks
c) A batch of 400 steel balls is selected at random from this production and the diameter of each ball is measured.		
If the diameter of a ball is less than 17.0 mm, it will be reject	ted.	
Estimate how many balls will be rejected.		2 marks
$P(X < 17.0) \approx 0.025.$		
Let Y be the number of rejected balls among the 400.		
Y is binomially distributed with parameters $n = 400$ and p	= 0.025.	
The number of rejected balls can be estimated by		
$E(Y) = n \cdot p = 400 \cdot 0.025 = 10.$		
The number of rejected balls is estimated to be 10.		
Recognizing the binomial distribution and its parameters: 1 mark Calculating the expected value and concluding: 1 mark		