MARKING SCHEME

MATHEMATICS 3 PERIODS PART B

DATE: $12^{\text {th }}$ June 2023, morning

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

Examination with technological tool:
Approved calculator
Pencil for the graphs

Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Use a different page for each question.
- Answers must be supported by explanations.
- Answers must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is shown that an appropriate method and/or a correct approach has been used.

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

Translating mathematically : 1 mark
Determining the interval: 1 mark
Concluding: 1 mark
c) Can the model be extended to 205 cows?

Justify your answer.
The calculator gives

$$
f(205)=-0.82
$$

Using this model, we would find a negative daily average milk production for 205 cows. This model does not apply to a large number of cows.
Calculating $f(205)$: 1 mark
Justifying: 1 mark

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

PART B			
	QUESTION B1	Page $2 / 5$	Marks
d) The daily summer milk production per cow is normally distributed with mean $\mu=48$ litres and standard deviation $\sigma=16$ litres. Calculate the probability that a randomly chosen cow will produce more than 40 litres of milk on a summer's day. Give your answer correct to 3 decimal places. The random variable X denotes the daily summer milk production per cow. X follows a normal distribution with mean $\mu=48$ litres and standard deviation $\sigma=16$ litres. The calculator gives $P(X>40) \approx 0.691$ The probability that a randomly chosen cow will produce more than 40 litres of milk on a summer's day is approximately 0.691 .			2 marks
Writing $P(X>40)$: 1 mark Calculating and concluding: 1 mark			
e) We suppose that the probability that a randomly chosen cow will produce more than 40 litres of milk per day is equal to 0.69 . Currently Mary has 80 cows. Calculate the probability that less than 60 of these cows produce more than 40 litres of milk per day. The random variable Y denotes the number of cows that produce more than 40 litres of milk per day. Y is binomially distributed with parameters $n=80$ and $p=0.69$. Using the calculator, we find $P(Y<60)=P(Y \leq 59) \approx 0.851$ The probability that less than 60 of these cows produce more than 40 litres of milk per day is approximately 0.851 , or 85.1%.			2 marks
Writing $P(Y \leq 59)$: 1 mark Calculating and concluding: 1 mark			

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

PART B								
QUESTION B1	Page 3/5							
Part 3								
The table below shows the annual rainfall (measured in cm) on the farm								
over the last 10 years.								
Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 $x=$ Years after 2013 0 1 2 3 4 5 6 7 8 9 $y=$ Rainfall (cm) 123 125 117 115 120 113 110 100 108 105								

f) Draw a scatter diagram to represent the data from the table and by interpreting this diagram, describe the correlation.

The figure below belongs to both f) and g).

When x-values increase, the y-values decrease. Over the years, the average annual rainfall in cm on the farm has decreased. There is a rather strong negative correlation.

Drawing a scatter diagram: 2 marks
Describing the correlation: 2 marks

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

PART B		
QUESTION B1	Page 4/5	Marks
g)Determine an equation in the form $y=m \cdot x+b$ of the linear regression of y on x using the data from the table. Draw the regression line on the same diagram.	4 marks	
	Using the calculator, we find the following equation of the linear regression: $y=-2.3515 x+124.1818$. For the drawing on the diagram, see above. Results like $y=-2.35 x+124.18$ or $y=-2.35 x+124$ are admissible and even more appropriate. (Do not penalise students for giving too many decimal numbers.)	
Determining an equation of the linear regression line: 2 marks Drawing the regression line on the diagram: 2 marks		
h)Explain why a linear regression model might not be appropriate for this data over many years.	2 marks	
There are several similar ways of answering.		

PART B			
	QUESTION B1		Marks
	4 re is a pond on the farm, a diagram t = 1 metre): boundaries of this pond are the grap $(x)=-0.2 x^{2}+6.9,-5 \leq x \leq 5$ for the $g(x)=0.1 x^{2}-0.6,-5 \leq x \leq 5$ for the Calculate the area of this pond. The area A (in m^{2}) of this pond is given $A=\int_{-5}^{5}\left[\left(-0.2 x^{2}+6.9\right)-\left(0.1 x^{2}-0.6\right)\right]$ The calculator gives $A=50$. The area of the pond is $50 \mathrm{~m}^{2}$.	you will find b $\underset{5}{\underset{5}{\mid}} x$ functions f a oundary and undary.	4 marks
	Writing the correct formula: 1 mark Calculating the integral: 2 marks Concluding: 1 mark		

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

PART B			
QUESTION B2 Page 1/5			Marks
Part 1			
a) In August 2021 the trips in Helsinki's bike sharing system had a mean distance of 2.25 km and a standard deviation of 16.04 km . Explain what could have caused such a large standard deviation. The standard deviation gives us information about the spread around the mean of the values. The larger the standard deviation, the more dispersed the values are around the mean. In this example the standard deviation is very large, which means that at least some of the trips were very long.			
Explaining: 2 marks			
b) Over a certain period, the mean duration of the trips was $\mu=645$ seconds and the standard deviation was $\sigma=271$ seconds. Assume that the duration of a trip is normally distributed. Calculate the probability that a trip took longer than 12 minutes. X denotes the duration of a trip. X is normally distributed with mean $\mu=645$ seconds and standard deviation $\sigma=271$ seconds. $12 \mathrm{~min}=720 \mathrm{~s}$. Using the calculator we get: $P($ Trip took more than 720 seconds $)=P(X>720) \approx 0.391$. The probability that a trip took more than 12 minutes is approximately 0.391 or 39.1%.			
Writing $P(X>720)$: 1 mark Calculating and concluding: 2 marks			

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

Determining the yearly percentage increase: 2 marks
e) Since 2009, the total number of all bikes sold (including e-bikes) in Europe has been approximately constant at 20 million bikes per year.

Estimate the year in which the number of e-bikes sold will be more than half of all bikes sold.
50% of 20 million bikes is 10 million bikes.
Solve $N(t)=10$. The calculator gives $t \approx 17.5$.
We check the years $2026(t=17)$ and $2027(t=18)$:
$N(17) \approx 9.2$
$N(18) \approx 10.8$.
Thus, from the year 2027, more than 10 million electric bicycles will be sold, which represents a market share of more than 50%.

Calculating 50\% of 20 million: 0.5 marks
Writing the equation $N(t)=10: 0.5$ marks
Solving the equation: 1 mark
Estimating the year: 1 mark

PART B			
	QUESTION B2	Page 3/5	Marks
f) The maximum height of the pedal is 49 cm and the minimum height is 9 cm . Determine a and d. The amplitude a is half the distance between the maximum and minimum pedal heights (the length of the crank) : $a=\frac{49-9}{2}=20$. d is the vertical shift. $d=9+20=29$. Hence, the amplitude is 20 centimetres and the vertical shift is 29 centimetres.			3 marks
Determining a : 1 mark Determining $d: 1$ mark Concluding with units: 1 mark			

g) The time taken to complete a full rotation of the pedal is 1.5 seconds.

Calculate b.
Explain what information b gives about the rotation of the pedal.

$$
p=\frac{2 \pi}{b} \Leftrightarrow 1.5=\frac{2 \pi}{b} \Leftrightarrow b=\frac{2 \pi}{1.5} \Leftrightarrow b=\frac{4 \pi}{3} .
$$

The pedal moves $\frac{4 \pi}{3}$ radians per second or 240° per second.
Calculating $b: 2$ marks
Explaining: 1 mark

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

PART B		Page 5/5		
QUESTION B2	Marks			
j)Calculate the probability that the number of visitors to the Rhine Route from a random sample of 2000 visitors to the website is less than or equal to 156, assuming that H_{0} is true. 3 marks				
Decide whether H_{0} can be rejected. Justify your conclusion.				
X denotes the number of visitors to the Rhine Route among 2000 visitors				
to the website. X follows a binomial distribution with parameters $n=2000$				
and $p=0.086$.				
The calculator gives $P(X \leq 156)=0.107$ or 10.7%, which is much more				
than the 5% significance level. Hence the sample proportion has not				
decreased significantly from what we have hypothesized in the Null-				
hypothesis. There is a decrease, but it is not a significant decrease.				
Conclusion: H_{0} cannot be rejected.				Choosing the binomial distribution with appropriate parameters: 1 mark
:---				
Calculating $P(X \leq 156): 1$ mark				
Concluding: 1 mark				

