

EUROPEAN BACCALAUREATE 2023

MARKING SCHEME

MATHEMATICS 3 PERIODS PART B

DATE: 12th June 2023, morning

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

Examination with technological tool: Approved calculator Pencil for the graphs Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Use a different page for each question.
- Answers must be supported by explanations.
- Answers must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is shown that an appropriate method and/or a correct approach has been used.

PART B				
QUESTION B1	Page 1/5	Marks		
Part 1				
Mary runs a farm.				
The milk production on the farm can be modelled by the function <i>f</i>	given by			
$f(x) = -0.0028 x^2 + 0.57 x, 50 \le x \le 90,$				
where x is the number of cows on the farm and $f(x)$ represents the daily milk production, measured in hL (1 hL = 1 hectolitre = 100 litr	e average es).			
a) Calculate the average daily milk production of 70 cows.		2 marks		
The calculator gives				
f(70) = 26.18	traa			
(2618 litres).	lres			
Writing <i>f</i> (70): 1 mark				
Calculating and concluding: 1 mark	vorago	2 marka		
milk production of 25 hL or more.	verage	JIIAIKS		
Mathematical representation of the situation:				
$f(x) \ge 25$ with $50 \le x \le 90$.				
The calculator gives				
$63.95 \le x \le 90.$				
production of 25 hL or more.	(
Translating mathematically : 1 mark Determining the interval: 1 mark Concluding: 1 mark				
c) Can the model be extended to 205 cows? Justify your answer.		2 marks		
The calculator gives				
f(205) = -0.82.				
Using this model, we would find a negative daily average mill production for 205 cows. This model does not apply to a large of cows.	e number			
Calculating f(205): 1 mark				
Justitying: 1 mark				

PART B				
	QUESTION B1	Page 2/5	Marks	
Par	t 2			
d)	The daily summer milk production per cow is normally distribu- mean $\mu = 48$ litres and standard deviation $\sigma = 16$ litres. Calculate the probability that a randomly chosen cow will pro- more than 40 litres of milk on a summer's day. Give your answ correct to 3 decimal places.	ited with duce ver	2 marks	
	The random variable X denotes the daily summer milk production. X follows a normal distribution with mean $\mu = 48$ litres and standard deviation $\sigma = 16$ litres. The calculator gives $P(X > 40) \approx 0.691$.	tion per andard		
	The probability that a randomly chosen cow will produce more litres of milk on a summer's day is approximately 0.691.	e than 40		
	Writing $P(X > 40)$: 1 mark Calculating and concluding: 1 mark			
e)	We suppose that the probability that a randomly chosen cow produce more than 40 litres of milk per day is equal to 0.69. Currently Mary has 80 cows.	will		
	Calculate the probability that less than 60 of these cows prod than 40 litres of milk per day.	luce more	2 marks	
	The random variable Y denotes the number of cows that prod than 40 litres of milk per day. Y is binomially distributed with parameters $n=80$ and $p=0.69$.	uce more		
	Using the calculator, we find			
	$P(Y < 60) = P(Y \le 59) \approx 0.851.$			
	The probability that less than 60 of these cows produce more litres of milk per day is approximately 0.851, or 85.1%.	than 40		
	Writing $P(Y \le 59)$: 1 mark Calculating and concluding: 1 mark			

PART B											
			QUEST	FION B	31				Ρας	ge 3/5	Marks
Part 3 The table be over the last Year	elow sh t 10 yea 2013	ows th ars. 2014	e annu 2015	al rain	fall (me 2017	easured	d in cm 2019) on th 2020	ne farm 2021	2022	
x = Years after 2013	0	1	2	3	4	5	6	7	8	9	
y = Rainfall (cm)	123	125	117	115	120	113	110	100	108	105	
f) Draw a interpresent of the figure of th	 scatte scatte ure belo are belo c-values annus negativ 	r diagra is diagr ow belo 126 124 -122 -120 -118 -116 -114 -112 -110 -108 -106 -104 -102 -102 -104 -102 -104 -102 -104 -102 -104 -104 -102 -104 -104 -104 -104 -104 -104 -104 -104	am to r ram, de ongs to ongs to ase, th all in ci elation.	e y-val	ent the e the co) and g /=-2.35	data fro prrelation j). 515x+1	om the on. 24.18 24.18	table a	and by ars, the ere is a	e a rather	4 marks
Drawing Describir	a scatte	r diagrai orrelatior	m: 2 ma n: 2 mar	rks ks							1

PART B					
	QUESTION B1	Page 4/5	Marks		
g)	Determine an equation in the form $y = m \cdot x + b$ of the linear x of y on x using the data from the table. Draw the regression line on the same diagram.	egression	4 marks		
	Using the calculator, we find the following equation of the line regression: $y = -2.3515x + 124.1818$. For the drawing on the diagram, see above.	ar			
Results like $y = -2.35x + 124.18$ or $y = -2.35x + 124$ are admissible and even more appropriate.					
	(Do not penalise students for giving too many decimal numbe	rs.)			
	Determining an equation of the linear regression line: 2 marks Drawing the regression line on the diagram: 2 marks				
h)	Explain why a linear regression model might not be appropriated at a over many years.	ate for this	2 marks		
	There are several similar ways of answering.				
	For example:				
	After a long time, the rainfall would become zero or eve	n negative.			
	Or:				
	• In the year 2066, we would have a negative quantity of $x = 53 \Rightarrow y = -0.4477$.	rainfall:			
	Explaining: 2 marks		•		

PART B			
QUESTION B1	Page 5/5	Marks	
Part 4 There is a pond on the farm, a diagram of which you will find below	v		
(unit = 1 metre):			
The boundaries of this pond are the graphs of the functions <i>f</i> and g by	g defined		
$f(x) = -0.2x^2 + 6.9$, $-5 \le x \le 5$ for the upper boundary and			
$g(x) = 0.1 x^2 - 0.6$, $-5 \le x \le 5$ for the lower boundary.			
i) Calculate the area of this pond.		4 marks	
The area A (in m^2) of this pond is given by			
$A = \int_{-5}^{5} \left[\left(-0.2 x^2 + 6.9 \right) - \left(0.1 x^2 - 0.6 \right) \right] dx . \text{ (See formula booklet)}$			
The calculator gives <i>A</i> =50.			
The area of the pond is 50 m^2 .			
Writing the correct formula:1 mark Calculating the integral: 2 marks Concluding: 1 mark			

	PART B		
	QUESTION B2	Page 1/5	Marks
Pa	rt 1		
a)	In August 2021 the trips in Helsinki's bike sharing system had a mean distance of 2.25 km and a standard deviation of 16.04 km.		
	Explain what could have caused such a large standard deviation. Public bikes in the standard bikes in the st	Helsinki	2 marks
	The standard deviation gives us information about the spread a mean of the values. The larger the standard deviation, the mor dispersed the values are around the mean. In this example the deviation is very large, which means that at least some of the to very long.	around the e e standard rips were	
	Explaining: 2 marks		
b)	Over a certain period, the mean duration of the trips was		
	μ = 645 seconds and the standard deviation was σ = 271 seconds	onds.	
	Assume that the duration of a trip is normally distributed.		
	Calculate the probability that a trip took longer than 12 minute	S.	3 marks
	X denotes the duration of a trip. X is normally distributed with mean $\mu = 645$ seconds and standard deviation $\sigma = 271$ s 12 min = 720 s. Using the calculator we get: P(Trip took more than 720 seconds)= $P(X > 720) \approx 0.391$. The probability that a trip took more than 12 minutes is approx	econds. imately	
	0.391 or 39.1%.		
	Writing $P(X > 720)$: 1 mark Calculating and concluding: 2 marks		

PART B				
QUESTION B2	Page 2/5	Marks		
Part 2 A survey covering 2009-2019 has shown that the sale of e-bikes in the European Union can be modelled by the function <i>N</i> given by $N(t) = 0.0756 \cdot e^{0.163t+2.03}$, where <i>t</i> is the number of years after 2009 and $N(t)$ is the number of e-bikes sold, in millions. c) Rewrite the formula for $N(t)$ in the form $N(t) = K \cdot A^t$.				
$N(t) = 0.0756 \cdot e^{0.163t + 2.03} = (0.0756 \cdot e^{2.03}) \cdot e^{0.163t}$ $\approx 0.576 \cdot (e^{0.163})^{t}$ $\approx 0.576 \cdot 1.177^{t}$ (using the calculator).				
Isolating ^{e^{2.03}} : 1 mark Giving the required form: 1 mark				
d) According to this model, determine the yearly percentage increase sale of e-bikes. $N(t) = 0.576 \cdot (1+0.177)^{t}$. Hence, the yearly percentage increase in the sale of e-bikes is Or: $\frac{N(t+1)}{N(t)} = \frac{0.0756 \cdot e^{0.163(t+1)+2.03}}{0.0756 \cdot e^{0.163t+2.03}} = e^{0.163} \approx 1.177$ (using the	ease in the 17.7%. calculator)	2 marks		
Determining the yearly percentage increase: 2 marks				
 e) Since 2009, the total number of all bikes sold (including e-bikes Europe has been approximately constant at 20 million bikes per Estimate the year in which the number of e-bikes sold will be m half of all bikes sold. 	;) in r year. nore than	3 marks		
50% of 20 million bikes is 10 million bikes. Solve $N(t) = 10$. The calculator gives $t \approx 17.5$. We check the years 2026 $(t = 17)$ and 2027 $(t = 18)$: $N(17) \approx 9.2$ $N(18) \approx 10.8$. Thus, from the year 2027, more than 10 million electric bicycles sold, which represents a market share of more than 50%.	s will be			
Calculating 50% of 20 million: 0.5 marks Writing the equation $N(t) = 10$: 0.5 marks Solving the equation: 1 mark Estimating the year: 1 mark				

	PART B		
	QUESTION B2	Page 3/5	Marks
Pa The tim	rt 3 e height $h(t)$ in centimetres (cm) of a bicycle pedal above the g e <i>t</i> seconds is defined by $h(t) = a \cdot \sin(b \cdot t) + d$.	round at	
f)	The maximum height of the pedal is 49 cm and the minimum h is 9 cm. Determine <i>a</i> and <i>d</i> .	eight	3 marks
	The amplitude <i>a</i> is half the distance between the maximum an pedal heights (the length of the crank) : $a = \frac{49-9}{2} = 20$.	d minimum	
	<i>d</i> is the vertical shift. $d = 9 + 20 = 29$.		
	Hence, the amplitude is 20 centimetres and the vertical shift is 29 ce	entimetres.	
	Determining <i>a</i> : 1 mark Determining <i>d</i> : 1 mark Concluding with units: 1 mark		
g)	The time taken to complete a full rotation of the pedal is 1.5 set Calculate <i>b</i> . Explain what information <i>b</i> gives about the rotation of the pedal $p = \frac{2\pi}{b} \Leftrightarrow 1.5 = \frac{2\pi}{b} \Leftrightarrow b = \frac{2\pi}{1.5} \Leftrightarrow b = \frac{4\pi}{3}$. The pedal moves $\frac{4\pi}{3}$ radians per second or 240° per second.	conds. al.	3 marks
	Calculating <i>b</i> : 2 marks Explaining: 1 mark		

PART B		
QUESTION B2	Page 4/5	Marks
Part 4		
On a website (Euro-Velo) for long-distance cycle-routes in Europe, Route has been the most visited route.	the Rhine	
In 2020, 142 124 of the 1 644 417 visitors to the website visited the Route.	Rhine	
In 2021, in a random sample of 2000 visitors to the website, 156 vi Rhine Route.	sited the	
The Euro-Velo organisation is wondering whether the proportion of visiting the Rhine Route has decreased from 2020 to 2021. Hence, performing a hypothesis test at a 5 % significance level.	people they are	
<i>p</i> denotes the proportion of all visitors to the website visiting the Rh 2021.	iine Route in	
h) Verify that the null hypothesis for this test is H_0 : $p = 0.086$.		2 marks
The null hypothesis H_0 is the hypothesis that there is no differ between the proportions of people visiting the Rhine Route in 2021.	ence 2020 and in	
In 2020 the proportion of visitors to the website that visited the Route is $\frac{142\ 124}{1\ 644\ 417}$ =0.08643.	Rhine	
Hence: $H_0 : p \simeq 0.086$		
Explaining the meaning of the null hypothesis: 1 mark Determining H_0 : 1 mark		
i) Determine whether the test is left or right sided. Justify your a	answer.	2 marks
The organisation wants to know whether the proportion of peo the Rhine Route has decreased from 2020 to 2021. Thus, the sided.	ple visiting test is left	
Arguing: 1 mark Concluding: 1 mark		

PART B					
	QUESTION B2	Page 5/5	Marks		
j)	Calculate the probability that the number of visitors to the Rhin from a random sample of 2000 visitors to the website is less the to 156, assuming that H_0 is true.	ne Route an or equal	3 marks		
	Decide whether H_0 can be rejected. Justify your conclusion.				
	X denotes the number of visitors to the Rhine Route among 20 to the website. X follows a binomial distribution with parameter and $p = 0.086$.	00 visitors s			
	The calculator gives $P(X \le 156) = 0.107$ or 10.7 %, which is mutual than the 5 % significance level. Hence the sample proportion here are decreased significantly from what we have hypothesized in the hypothesis. There is a decrease, but it is not a significant decrease.	uch more as not Null- ease.			
	Conclusion: H_0 cannot be rejected.				
	Choosing the binomial distribution with appropriate parameters: 1 mark Calculating $P(X \le 156)$: 1 mark Concluding: 1 mark				