Exercise 1	Calc. : 🗡
Consider the function $f(x) = x^3 + 3x^2$.	
Determine the equation of the tangent to the curve at $x = -1$.	5 marks

Exercise 2

Exercise 2	Calc. : 🗡
The population of a small town increases linearly. In 2012 the population was 5 000. Five years	
later it was found to be 6 250.	
	a 1

- a) **Determine** a model for the population P as a function of t where t is the time in years after 3 marks2012.
- b) Investigate in which year the population exceeds 7 000.

Exercise 3

Calc. : 🗡 A student kicks a ball up into the air. The height of the ball, h, in metres, can be modelled by the function

 $h(t) = -5t^2 + 15t$

where h(t) is the height in metres and t is the time in seconds after it is kicked. Determine the maximum height reached by the ball.

Exercise 4

The function $F(x) = \frac{2}{3}x^3 + 2x^2 + 2$ is a primitive function of f(x). Consider the graph of the function f(x) shown below. **Show** that the shaded area bounded by the graph of f(x), the lines x = -1 and x = 1, and the 5 marks x-axis is equal to 4 square units.

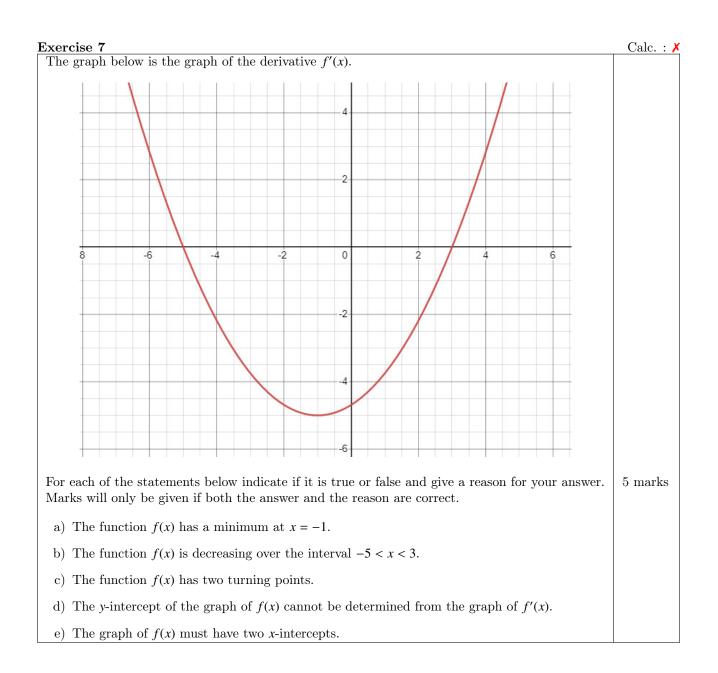
Exercise 5	Calc. : 🗡
Scientists observe the population of ladybirds in a field. The population can be modelled by the	
function $P(t) = 200 \cdot e^{\ln(1.015)t}$ where $P(t)$ is the number of ladybirds and t is the time in weeks after	
the observation starts.	
a) How many ladybirds are there at the start of the observation?	$1 \mathrm{mark}$
b) Calculate the number of ladybirds after one week.	2 marks
c) Determine the weekly percentage increase.	2 marks

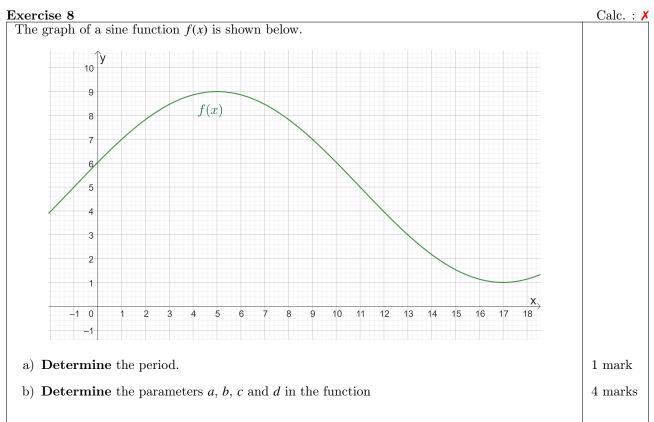
Exercise 6	Calc. : 🗡
An exponential function is of the form $f(x) = e^{a \cdot x + b}$. The graph of $f(x)$ passes through the	
co-ordinates $(0, e)$ and $\left(1, \frac{1}{e}\right)$.	
Determine the parameters a and b , and give the function $f(x)$.	5 marks

Calc. : 🗡

5 marks

2 marks





$$f(x) = a\sin\left(b\left(x - c\right)\right) + d$$

