Exercise 1

Exercise 2

Consider the function f defined by $f(x) = 3x^3 - 2x^2 - 1$.	
Consider also the function F defined by $F(x) = a \cdot x^4 + b \cdot x^3 + c \cdot x + d$, where a, b, c and d are four	
real numbers.	
a) Find the values of the three parameters $a, b, and c$ such that $F' = f$.	3 marks
b) Find the value of the parameter d such that $F(1) = \frac{1}{d}$.	2 marks

Let us consider the function f defined by:

$$f(x) = \frac{1}{x}$$

We recall that the function F defined by $F(x) = \ln(x)$ is a primitive of f. Calculate the area under the curve of f from x = 1 to x = e.

Exercise 7	Calc. : 🗡					
Two brothers, Jarek and Kuba, wash the dishes after each dinner. Kuba is older and the proba-						
bility that he washes the dishes after dinner is $4/7$.						
When Kuba washes the dishes, the probability of breaking a plate is $2/100$. When Jarek washes						
the dishes, this probability is $1/100$.						
We select a dinner at random.						
a) Draw a tree diagram of the situation described.	2 marks					
b) A plate is broken during the washing of the dishes after the selected dinner. Calculate the probability that Kuba washed the dishes.	3 marks					

 $5 \mathrm{marks}$

Exercise 8	Calc. : 🗡
In a certain class, 60% of the students have a cat, 50% of the students have a dog. We also know	
that 30% of the students have both a dog and a cat. We select a student at random in this class	
and we consider the following two events:	
Event A — the student has a dog,	
Event B — the student has a cat.	
a) Determine if the events A and B are independent. Justify the answer.	2 marks
b) Calculate $P(\mathbf{A} \cup \mathbf{B})$.	3 marks

Exercise 9	Calc. : 🗡				
A player throws at a dartboard 4 times in a row. For each throw, the player hits the bull's eye					
in the center of the dartboard with a probability of $1/4$. The random variable X indicates how					
often the player hits the bull's eye.					
a) Explain why the random variable X follows a binomial distribution and give its parameters.					
b) Calculate the probability that the player hits the bull's eye exactly three times.					
Exercise 10	Calc. : 🗡				
The data presented in the table below describes the growth of a cactus. This type of plant can					
grow to be maximum 5 meters tall.					
r = Years after planted 0 1 2 3 4 5 6					

	$\lambda = 1$ cars after planted	0	1		5	-	0	0	1		
	y = Height (m)	0	0.6	1.3	1.7	2.2	2.5	2.9			
a) Draw a scatterplot for this data. Use an appropriate scale.									2 marks		
b) Knowing that the data describes the growth of a cactus that can maximum become 5 meters										3 marks	

b) Knowing that the data describes the growth of a cactus that can maximum become 5 meters 3 m high, **discuss** what kind of regression model would describe the data best. **Justify**.