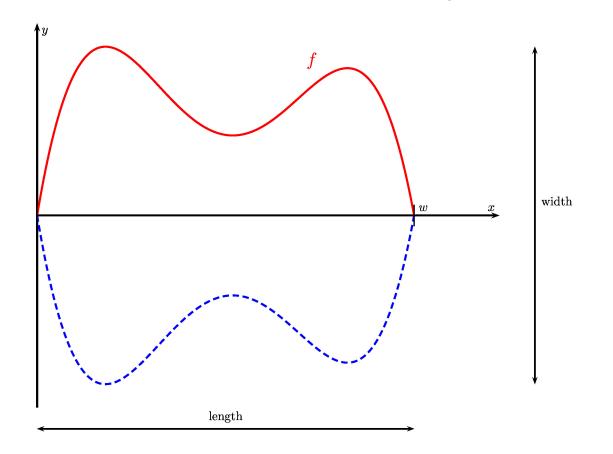
Exercise 1	Calc. : 🗸					
In this question, parts 1, 2 and 3 are independent. Part 1. Sports watches are wristwatches that can be used during sporting activities. A lot of people use those watches.						
The so-called <u>Sporty</u> sports watch is particularly popular. The probability that a random person with a sports watch has the watch <u>Sporty</u> is 60%. We are looking at a sample of 500 people with sports watches. The random variable X gives the number of people in this sample that have the sports watch <u>Sporty</u> .						
a) Explain why X can be modelled by a binomial law and give its parameters.						
b) Calculate the probability that at least 300 people in this sample have the sports watch <u>Sporty</u> . Round to 2 decimal places.						
c) Determine the expected number of people in this sample with the sports watch <u>Sporty</u> .						
d) Calculate the standard deviation of X. Round to 3 decimal places. Interpret it in the given context.						

Part 2.

The sports watch <u>Sporty</u> can give the effort during a run very accurately if the person gives his or her weight. A woman with a weight of 60 kg is running uphill for 30 minutes. Therefore, her effort level is not steady. Her running power can be modelled by the following function:					
$P(t) = -0.05t^2 + 3t + 66, \qquad \text{with } 0 \le t \le 30$					
where t is in minutes and $P(t)$ in kJ/min (kilojoules per minute).					
e) Calculate at which power the woman is running when she starts running, and 15 minutes after she started.					
f) Draw the graph of the function P in the given domain.					
g) Determine at what time the woman's running power is 106 kJ/min .	3 marks				


Part 3.	
A lot of people are using the internet to buy their sports watch Sporty, and ask for a delivery at	
a shop called "RunAway".	
We know that 80% of the time the Sporty arrives on time (in a few days), 15% of the time it	
arrives late (it takes some weeks to arrive) and the rest of the times it doesn't arrive at all.	
We also know that when the Sporty arrives on time, the probability that people like the shop	
"RunAway" is 0.9; when it arrives late, the probability that people like it is 0.3; and if it doesn't	
arrive at all the probability that people like the shop is 0.1.	
We randomly select a user who ordered a Sporty watch online and asked for delivery in this shop.	
h) Sketch a tree diagram of the situation above.	3 marks
i) Compute the probability that this user likes the share "Dup Away"	9 manles
i) Compute the probability that this user likes the shop "RunAway".	2 marks
j) If we know that this person liked the shop, give the probability that the <u>Sporty</u> that was ordered arrived on time.	3 marks

Part 1.

A musician plays a guitar and wishes to model its shape. The main wood box can be modeled by the following equation:

$$f(x) = -0.13x^4 + 1.4x^3 - 4.9x^2 + 6x$$

The following picture shows the curve of f (in red, plain line), together with the symmetric of this curve, with respect to the x-axis (in blue, dashed line). In this equation, x is in decimetres, and f(x) is also in decimetres. The surface between those two curves forms the wood box of this guitar.

As can be seen on the graph, the function f is in fact defined from 0 to a value w, which is the other solution of the equation f(x) = 0.

a) Determine the value of <i>w</i> , rounding to 3 decimal places. Give the length of the wood box, in centimetres.	2 marks				
b) Determine the maximum value of f , rounding to 3 decimal places. Give the width of the wood box, in centimetres.	2 marks				
c) The function f has three stationary points. In question b) we have found one of them. Give the coordinates of the two other stationary points, rounded to two decimal places.					
Before a big concert, our musician wants to paint the back of the wood box in black. We hence want to know what is the area of this surface.					
d) Determine an approximate value of the following integral, rounded to 3 decimal places:	3 marks				
$\int_0^{5.3} f(x) \mathrm{d}x$					
Give the area that has to be painted, in square decimetres.					

Part 2.												
Our musician opens a webpage for his band, and is interested in the number of followers across							oss					
time ($x = 0$ when the webpage is created). The table below shows the number of followers for the							the					
first 20 weeks:												
	-		-		10		10	10	10			
x = Time (weeks)	2	4	5	8	10	11	12	13	16	18		
y = Number of followers	275	240	180	300	380	350	250	350	440	400		
e) Draw a scatter diagram t	to repr	esent 1	the da	ta fron	n the t	able.						3 marks
f) Compute the linear correlation coefficient. Determine if a linear model would be appropriate for his data. Discuss how we could improve the linear model by combining it with another one.									3 marks			
g) Determine an equation in the form $y = a \cdot x + b$ of the linear regression of y on x using this data. Round a and b to one decimal place.								his	3 marks			
Draw the regression line	on the	same	diagra	am as e	e).							
In h) and i), use the linear model $f(x) = 20 \cdot x + 190$.												
h) Compute when the number of followers would be over 800.									3 marks			
i) Explain why the model is not appropriate over many weeks.								2 marks				