Exercise 2	Calc. : 🗡
Déterminer les solutions complexes de l'équation $z^2 = 3i$. Donner les réponses sous la forme	5 marks
$z = re^{i\theta}$ où $\theta \in]-\pi, +\pi].$	
Exercise 3	Calc.: X
Soit f la fonction définie par $f(x) = \frac{2x-1}{x-1}$ et f^{-1} la fonction réciproque de f.	
Résoudre l'équation $f^{-1}(x) = 2$.	3 marks
Exercise 4	Calc. : 🗶
Une suite arithmétique strictement croissante (a_n) et une suite géométrique (b_n) ont le même	Caic 🗡
premier terme $a_1 = b_1 = 2$.	
De plus, les deux suites (a_n) et (b_n) ont le même troisième terme $a_3 = b_3$.	
La somme des trois premiers termes de la suite arithmétique est supérieure de 4 à la somme des	
trois premiers termes de la suite géométrique.	
Trouver l'expression du n -ième terme de chacune des suites (a_n) et de (b_n) .	7 marks
Exercise 5	Calc.: X
Une variable aléatoire continue X a une fonction de densité f donnée par :	
$\begin{cases} 0 & \text{si } r < 0 \end{cases}$	
$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ a \cdot e^{-ax} & \text{si } x \ge 0 \end{cases}$	
On sait que : $P(X < 1) = \frac{1}{2}$.	
Montrer que $a = \ln 2$.	5 marks

Calc.: X

 $4~\mathrm{marks}$

Exercise 1
Soit f la fonction définie par $f(x) = \ln(3x - 2)$.

Déterminer l'équation réduite de la tangente à la courbe représentative de f en x = 1.

Exercise 6 Calc.: X

Le graphique ci-dessous est celui de la dérivée seconde f'' d'une fonction.

Indiquer lesquels des énoncés suivants sont vrais et lesquels sont faux.

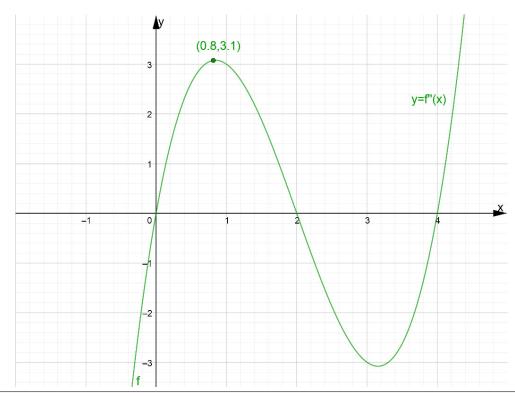
Justifier votre réponse.

1. Le graphique de f est concave pour -0, 5 < x < 2.

 $2~\mathrm{marks}$

2. Le graphique de f a un point d'inflexion en x=0.

- 2 marks
- 3. Si f'(0) = 0, alors le graphique de f a un point d'inflexion avec une tangente horizontale en x = 0.



Un fabricant de drones teste de nouveaux types de drones sur un terrain d'athlétisme local. Le drone A se déplace le long de la trajectoire donnée par l'équation :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 13 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ 12 \end{pmatrix}, \quad t \ge 0$$

Le temps t est exprimé en secondes et la distance est mesurée en mètres.

1. Trouver la position du drone A après 6 secondes.

2 marks

2. **Déterminer** le temps mis par le drone A pour atteindre le point de coordonnées (25; 33; 60).

2 marks

3. Calculer la vitesse du drone A. Donner la réponse sous la forme la plus simple.

 $2~\mathrm{marks}$

4. Un observateur observe le drone A depuis le point de coordonnées (13; 53; 0).

Calculer la distance la plus courte entre le drone A et l'observateur, et l'heure à laquelle

3 marks

Le drone B décolle du point de coordonnées (9; 11; 0) et se déplace à 7 m/s dans la direction $\begin{pmatrix} 1\\1,5\\3 \end{pmatrix}$.

5. Montrer que l'équation décrivant la position du drone B est :

2 marks

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 9 \\ 11 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}, \quad t \ge 0$$

6. Trouver le point où les trajectoires des drones A et B se croisent.

2 marks

7. **Préciser** si les drones vont entrer en collision à ce moment-là.

2 marks

Justifier la réponse.

elle se produit.

Exercise 8 Calc. : X

Deux joueurs, A et B, lancent alternativement et indépendamment une pièce de monnaie non truquée. Le premier joueur qui obtient « face » gagne. Supposons que le joueur A lance la monnaie en premier.

5 marks

- 1. Écrire la probabilité que A gagne lors du premier lancer.
- 2. Calculer la probabilité que A gagne au troisième lancer.
- 3. Déterminer la probabilité que A obtienne en premier « face ».