Exercise 1 Calc. : ✓

Vereinfachen Sie mit Hilfe der Rechenregeln für Potenzen die nachfolgenden Ausdrücke und 2 marks schreiben Sie das Ergebnis als Term in der Form: a^f wobei gilt: $a, f \in \mathbb{R}$: $\frac{\left(\sqrt{a}\right)^3}{\sqrt[3]{a^2}}$

Exercise 2 Calc.: ✓

Das Licht legt in einer Sekunde 299 792 458 m zurück. Die Längenangabe — ein Lichtjahr (1 Lj) — entspricht der Strecke, die das Licht in einem Jahr (365 Tage) zurücklegt und wird mit 9,5 Billionen km angegeben.

An der Küste Belgiens tobt ein Gewitter, das von Meteorologen am Observatorium in Uccle beobachtet wird. Die Entfernung des Küstenortes De Haan bis zum Observatoir in Brüssel beträgt ungefähr 100 km Luftlinie.

Nach welcher Zeit kann ein Blitz an der Küste von den Meteorologen gesichtet werden? Runden Sie das Ergebnis auf Millisekunden (ms) mit einer Dezimale.

2 marks

Exercise 3

Geben Sie für die nachfolgende Gleichung eine Definitionsmenge an und finden Sie die Lösungs- 4 marks

Geben Sie für die nachfolgende Gleichung eine Definitionsmenge **an** und **finden** Sie die Lösungsmenge, wenn gilt: $\mathbb{G} = \mathbb{R}$ $\log(4x+5) = \log(3x)$

Exercise 4 Calc.: ✓
Die Körpergröße in Zentimetern von 6 Schülern einer S5-Klasse wurde gemessen. Die Ergebnisse | 4 marks

Die Körpergröße in Zentimetern von 6 Schülern einer S5-Klasse wurde gemessen. Die Ergebnisse sind nachfolgend aufgelistet:

161; 175; 182; 173; 159; y

Ein Schüler war an diesem Tag abwesend. Es ist aber bekannt, dass die durchschnittliche Körpergröße der 6 Schüler $\bar{x}=173$ cm beträgt.

a) **Zeigen** Sie durch nachvollziehbare Berechnung, dass die Körpergröße des abwesenden Schülers $y=188~{\rm cm}$ beträgt.

In der Mathematikstunde hat die Klasse gelernt, wie man die Standardabweichung berechnet und stellt nachfolgende Tabelle auf, wobei einige Zahlen nicht mehr zu erkennen sind.

Körpergröße (x_i)	$(x-\overline{x})$	$(x-\overline{x})^2$
161	-12	144
175	2	4
182	9	81
173	В	0
A	-14	196
188	15	С

- b) Bestimmen Sie nachvollziehbar die exakten Werte der mit A, B, und C bezeichneten, nicht leserlichen Zahlen.
- c) Berechnen Sie anhand der Daten aus der Tabelle oder auf andere geeignete Weise die Standardabweichung der Körpergrößen der Schüler. Runden Sie Ihre Antwort auf eine Dezimale.
- d) Interpretieren Sie die Standardabweichung von rund 10 in diesem Zusammenhang.

Exercise 5 Calc. : \checkmark Von einem Winkel α ist bekannt: $\tan(\alpha) = -1,50$ 4 marks

a) Geben Sie alle möglichen Winkeln α im Bogenmaß an.

b) **Geben** Sie die Polarkoordinaten des Punktes $Q(-2 \mid -\sqrt{3})$ in korrekter Schreibweise an.

Exercise 6 Calc.: ✓

In der Kaffeebar Dolce Vita wird der Espresso sehr heiß serviert. Die nachstehende Funktion gibt ein Modell für die Temperaturabnehme T (in °C) in Abhängigkeit von der Zeit t (in min) des Kaffees in der Tasse an:

4 marks

$$T(t) = 20 + 70 \cdot e^{-0.13926 \cdot t}$$

Führen Sie geeignete Berechnungen durch, um nachfolgende Fragen durch konkrete Zahlenwerte beantworten zu können.

- a) Mit welcher Temperatur wird der Kaffee im Dolce Vita nach dieser Modellrechnung serviert?
- b) Drücken Sie die Temperaturabnahme des Kaffees in der Tasse nach dem Servieren in Prozenten aus. (gerundet auf eine ganze Zahl)
- c) Nach welcher Zeit gerundet auf Zehntel-Minuten wird der Kaffee auf eine Trinktemperatur von unter 45°C abgekühlt sein?

Ein Gast musste vorzeitig das Kaffeehaus verlassen und hat die Tasse nicht angerührt. Vom Personal wird die Kaffeetasse nicht bemerkt, sodass sie eine sehr lange Zeit unberührt im Raum still steht.

d) Kann man auf Basis der Modellrechnung vorhersagen, an welche Temperatur sich der Kaffee in der Tasse annähern wird? **Begründen** Sie Ihre Antwort und **nennen** Sie diese Temperatur!