Exercise 1 The diagram below shows the graph of a function f and the tangent at the point P where $x = 2$.	Calc. : 🗡
The diagram below shows the graph of a function f and the diagram f where $x = 2$.	
a) Determine $f(2)$ and $f'(2)$ graphically.	2 marks
b) Determine an equation of the tangent to the graph of f at the point P .	2 marks
c) Solve the equation $f'(x) = 0$ graphically.	1 mark

Exercise	2

Exercise 2	Calc. : 🗡
Consider the function f where $f(x) = \frac{1}{2}x^2 + 1$.	
In a coordinate system sketch the graph of f , and draw 4 rectangles to approximate the region	5 marks
bounded by the graph of f and the x-axis for $0 \le x \le 4$.	
Use these rectangles to determine an approximate value of the area of this region.	

Exercise 3	Calc. : 🗡
Consider a differentiable function f . The figure below shows the graph of its derivative f' for	
$0 \le x \le 7.$	
, y	
→ 1 → x	
Which one of the tables below describes the variation of the function f for $0 \le x \le 7$? Explain	5 marks
your answer.	
A. x 0 3.5 7 B. x 0 2 5 7	
$f(x) \qquad \qquad$	
C. x 0 2 5 7 D. x 0 2 7	
$f(x) \qquad \qquad$	
Exercise 4	Calc. : 🗡

Exercise 4	Calc. : 🗡
On a farm the wheat production P in kg per hectare can be modelled by	
$P(t) = 6\ 000 \cdot \mathrm{e}^{-\ln(2) \cdot t},$	
where t is the number of years after 2022.	
a) Calculate the wheat production in 2023 according to this model.	2 marks
b) Determine in what year the wheat production will be 1 500 kg per hectare according to this model.	3 marks

The figure below shows the graph of the function f defined by $f(x) = a \cdot \sin(b \cdot x) + d$, where the parameters a , b and d are integers.	
$\uparrow^{\mathcal{Y}}$	
a) Determine the values of <i>a</i> and <i>d</i> .	2 marks
b) Determine the period p of f and calculate the value of b .	3 marks

A study at a certain university found that	
• 70% of the students own a computer	
• 40% of the students owning a computer also own a car.	
• 55% of the students do not own a car.	
A student from this university is selected at random.	
Consider the following two events:	
Event O: "the student owns a computer"	
Event A: "the student owns a car".	
Are the events O and A independent? Justify the answer.	5 marks

		ne virus. The cats were also bensive, but totally accurate			
ere obtained:	-	, v	0		
	Having the virus	Not having the virus	Total		
New test positive	63				
New test negative		717			
Total			800		
 Complete the table and copy it to your answer sheet. Jsing the table, calculate the following probabilities: The probability of getting a negative result with the old test and a positive result with the new test. 					
• The probability that the new test gives a correct result.					
• The probability th	at the new test gives a	correct result.			

Exercise 8	Calc. : 🗡
Leila goes out into her family's garden to pick a few apples. Only one out of three apples is ok	
to eat. The rest of the apples are worm eaten.	
Leila randomly picks 4 apples.	
a) This may be seen as a Bernoulli process. Explain why.	1 mark
b) Calculate the probability that Leila picks exactly 2 apples that are ok to eat.	2 marks
c) Calculate the probability that at least 1 of the 4 apples is ok to eat.	2 marks

Exercise 9

Calc. : 🗡

Exercise 9	\Box Calc. : \land			
The 1984 "California Avocado Society" study of more than two hundred twenty-five million avocados determined that the weight of avocados is normally distributed with a mean of 215 grams and a standard deviation of 5 grams. Only avocados weighing between 210 grams and 225 grams are considered fit for sale.				
a) Show that 81.5% of avocados are fit for sale.	3 marks			
b) Determine the probability that an avocado weighs more than 215 grams, given that it is fit for sale.				
Give the answer as a fraction of integers.				

Exercise 10							Calc. : 🗡
A manufacturer produces titanium bicycle frames. The bicycle frames are tested before use and							
on average 7% of them are found to be faulty.							
A cheaper manufacturing process is introduced, and the manufacturer wishes to check whether							
the proportion of faulty frame	es has increa	ased.					
A random sample of 18 bicycle frames is selected and it is found that 4 of them are faulty.							
The manufacturer will carry o	ut a hypothe	esis test at a !	5% significan	ce level to see	e if the propo	rtion	
of faulty bicycle frames has in	creased.						
a) State a suitable null hyp	pothesis H_0	and an alterr	native hypoth	nesis H_a for t	he test.		2 marks
The random variable X describes the number of faulty bicycle frames in a sample of 18 bicycles.							
The table below shows the value of $P(X \ge k)$ for $k = 1, 2, 3, 4, 5$ and 6 for a probability of 0.07 of having a faulty frame.							
having a faulty frame.							
k 1	2	3	4	5	6]	
$P(X \ge k) \qquad 0.729$	0.362	0.127	0.0333	0.00665	0.00105	1	
						-	
b) Will the null hypothesis	be rejected	? Can we as	sume that the	e percentage	e of faulty bi	cycle	3 marks
frames has increased? E	xplain your	answer.					