Exercise 1

Exercise 2

Determine the equation of the line tangent to the function

$$
f(x)=3 x^{2}-11 x
$$

at the point where the value of the instantaneous slope of the function is 1 .

Exercise 3

Calc. : X

5 marks	A small bag of lollipops is left in a classroom. Half of the lollipops are green, the rest are red. 10 pupils enter the classroom, pick a lollipop from the bag at random, one after the other, and eat it. Is picking a green lollipop in this context a Bernouilli process? Justify your answer.

Exercise 4

Calc. : x
European Union regulations prohibit airlines from refusing to transport people with reduced mobility solely because of their disability. In Luxembourg, it is estimated that around 1% of people with reduced mobility use airline travel. It is assumed that the population flying out of Luxembourg is large enough that the probability of selecting a person with reduced mobility is constant.
On an airline flight from Luxembourg to London, only two out of 150 seats were reserved for persons with reduced mobility.
5 marks Justify the airline's decision to limit the number of seats reserved for persons with reduced mobility to two.

Exercise 5

Calc. : x

	The value of a certain luxury wine is growing rapidly. The price for a single bottle can be modelled by the function:
$\qquad f(t)=1400 \cdot \mathrm{e}^{\ln (1.10) \cdot t}$	
where $f(t)$ is the price for a bottle in Euros and t is years after 2020.	
3 marks	a) Interpret the two numbers 1400 and 1.10. 2 marks b) Calculate the price of a bottle in 2021.

Exercise 6

Calc. : X

1 mark
a) Give the domain of f.

1 mark
b) Give the limit of f when x approaches $+\infty$.
1.5 marks
1.5 marks
c) Determine any intervals over which f is increasing or decreasing.
d) Give the inverse function of $f(x)$.

Exercise 7
Calc. : X
Calc. : X
Let $f(x)>g(x)$ be two positive functions, with respective primitives $F(x)$ and $G(x)$. It is further known, that:

x	1	4
$F(x)$	-3	8
$G(x)$	2	6

5 marks
Determine the area bounded by the graphs of $f(x)$ and $g(x)$ and the lines of equations $x=1$ and $x=4$.

Exercise 8

Calc. : x
The graph of the function $y=f(x)$ is presented here:

Given the following results:

$$
\int_{b}^{c} f(x) \mathrm{dx}=2.3 \quad \int_{a}^{c} f(x) \mathrm{dx}=-1.1 \quad \int_{b}^{d} f(x) \mathrm{dx}=-0.4
$$

5 marks
...calculate the value of the shaded area.

Exercise 9

Calc. : X
The table below gathers the values of two variables x and y :

x	0	2	4	6	8	10
y	6	7	10	14	15	20

3.5 marks
1.5 marks
a) Draw a scatter diagram using these values.
b) Compute and add the mean point to your graph.

Exercise 10

State if the following sentences are True (T) or False (F) and justify your statements:
1 mark a) The point A(e; 1) belongs to the function $y=\ln (x)$.
1 mark b) When a function is positive, its first derivative is necessarily increasing.
1 mark
c) Let f be a function defined by $f(x)=\mathrm{e}^{x}-1$. Its first derivative is equal to zero for $x=0$.

1 mark
d) Let f be a function defined over \mathbb{R} such that $\int_{0}^{3} f(x) \mathrm{dx}>0$ and $\int_{3}^{6} f(x) \mathrm{dx}<0$.

We can thus write : $\int_{0}^{6} f(x) \mathrm{dx}=0$
1 mark
e) A set of bivariate data points $(x ; y)$ has a linear correlation coefficient of -0.95 . We can thus state that the correlation is weak.

