Exercise 1	Calc. : 🗡
Give the derivative $f'(x)$ of the following functions:	
1. $f(x) = x^3 - 3x^2$	2 marks
2. $f(x) = 2x^2 + x - 3$	2 marks
3. $f(x) = \frac{1}{2}x - \frac{1}{3}x^3 + \frac{2}{3}x^6$	2 marks
Exercise 2 Consider the graph of the function f shown below. The line r is a tangent line to the graph of f at point A.	Calc. : X
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1. Use the information in the diagram to find the equation of the line r. 2. Civen that $f(r) = r^3 - 3r^2 + 3r + 1$ use the diagram or otherwise to find the value of $f'(0)$	4 marks
2. Given that $f(x) = x^2 - 5x^2 + 2x + 1$, use the diagram of otherwise to find the value of $f(0)$.	4 marks
Exercise 3 A town's population is growing linearly. In 2018 the population was 5 000. By 2020 the population	Calc. : X
had increased to 7 400.	
1. Give the function $P(t)$ where P is the population and t is the number of years since 2018.	3 marks
2. Use your function $P(t)$ to predict the population in 2025.	2 marks
3. According to this model in which year will the population reach 19 400?	2 marks
Exercise 4	Calc. : 🗡
The function f is defined as $f(x) = 2x^2 - 8x + 8$.	
1. Determine the coordinates of the y-intercept.	2 marks
2. Calculate $f(2)$	2 marks
3. Determine the derivative $f'(x)$.	2 marks
4. For what value of x does the function $f(x)$ have a turning point? State the nature of the turning point and explain your answer.	3 marks
5. Find the equation of the tangent to the curve at the point $(1, 2)$.	4 marks
6. The point A is a point on the graph of f. The gradient at the point A is equal to 12. Find the coordinates of the point A	1 marks
r mu the coordinates of the point A.	4 marks

