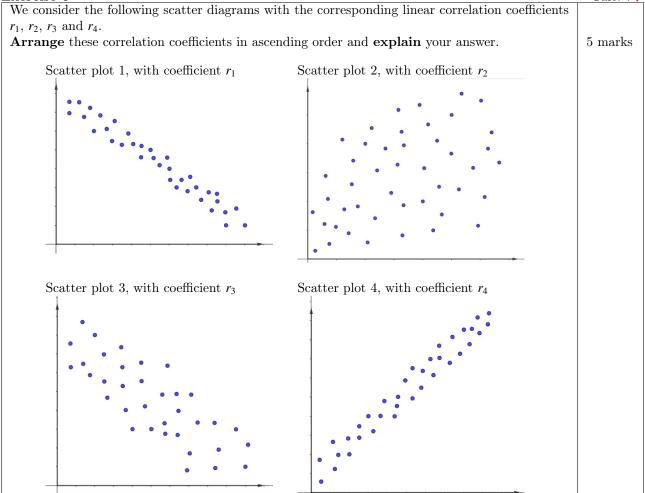

Exercise 2

Calc. : 🗡 A clothing store delivers orders made online. Of the 400 orders that have been sent, 60 have a 5 marks colour problem, 90 have a size problem and 260 have no problem at all. If one piece of clothing is taken randomly, **calculate** the probability that it has a colour issue, knowing that it also has a size problem.

Exercise 3

Given are the graphs of the derivatives of the functions fand g.

- 1. **Determine** whether the function f has an extremum within the shown domain and **justify** your answer. If f has an extremum, **determine** its nature.
- 2. Determine whether the function g has an extremum within the shown domain and justify your answer. If g has an extremum, ${\bf determine}$ its nature.



Calc. : 🗡
5 marks

Exercise 5	Calc. : 🗡
Alper uses a GPS average speed measuring device when driving. Alper drives on a motorway	
restricted to 120 km/h. The device measured his average speed to be 110 km/h.	
One week later he receives a speeding fine from the above journey where he was caught by a	
properly calibrated speed radar to be going more than 130 km/h.	
Discuss why Alper thought he was following the law and why the speed radar caught him	5 marks
speeding.	
Use examples and full reasoning, for example by drawing a graph and using the vocabulary studied	
in class.	

Calc. : 🗡

Exercise 7	Calc. : 🗡
In a region of Europe, owls hunt voles (field mice). The number of owls and voles has been studied	
since 2010. We begin to study the evolution of the number of each of these species in 2010. The number of voles is given by the function below:	
$f(t) = 1\ 500\sin(b \cdot t) + 2\ 000$	
with t the number of years since 2010 and b a real number.	
The number of owls is given by the following function:	
$g(t) = 800 \sin\left(\frac{4\pi}{5} \cdot (t - 0.9)\right) + 1\ 500$	
with t still the number of years since 2010. The graphs of the functions f and g are given below	
∫ Number of animats	
0 1 2 3 4 5 6 7 8 9 10 11 time in years since 2010	
with the dotted curve showing the number of owls and the continuous line showing the number of voles.	
1. Determine the period of f and hence determine the value of the parameter b .	$1 \mathrm{mark}$
2. Determine the coordinates of point A (to one decimal place for t) and interpret the outcome in this context.	1.5 marks
3. Determine in which year (after 2020) the number of owls will peak again and justify your answer.	1 mark
4. State what happens when the number of prey decreases.	1.5 marks
Exercise 8	Calc. : 🗡
In a school, teachers claim that more than 20% of the pupils arrive late for class.	
1. State the null hypothesis H_0 and the alternative hypothesis H_1 from the teachers' point of	3 marks

State the null hypothesis H₀ and the alternative hypothesis H₁ from the teachers' point of view. Explain your answer.
 The pupils claim that the teachers exaggerate and that only a maximum of 10% of the pupils arrive late for class.
 State the null hypothesis H₀ and the alternative hypothesis H₁ in case the students would set up the investigation. Explain your answer.

Exercise 9	tablal		r ahow	tho t	arob	ability distribution of V:	Calc. : 🗡	
Consider a random variable X . The table below show the probability distribution of X :								
κ.	$c_i = 0$	1	2	3	4			
I	$p_i = 2a$	a	0.1	0.3	a			
Calculate the expected value of X .							5 marks	
Exercise 10							Calc. : 🗡	
On a trip, you have bought some bread but forgot about it. Four days later you have found it								
again at the bottom of your bag, but mould is developing on some parts. The mould develops								
according to the following formula:								

with P the percentage of bread covered and t the time in days, with t=0 four days after buying the bread.

1. This formula can also be written in another form.

Choose the right form $(Q_1, Q_2, Q_3 \text{ or } Q_4)$ and **justify** your answer.

 $Q_1(t) = 0.5 \cdot \ln(1.5)^t$ $Q_2(t) = 1.5 \cdot 0.5^t$
 $Q_3(t) = 0.5 \cdot 1.5^t$ $Q_4(t) = 1.5 \cdot \ln(0.5)^t$

2. Calculate what percentage of the bread is covered in mould, 5 days after buying the bread. 2 marks

3 marks