
Exercise 1	Calc. : \checkmark
Consider a rapid test to determine infection with a certain disease. We know that someone who	
has the disease will be correctly diagnosed 96% of the time. Someone who does not have the	
disease will be falsely diagnosed, a false positive, 2% of the time.	
The disease is prevalent in 0.4% of the population.	
1. A patient takes a test. Calculate the probability that they will get a positive result.	3 marks
2. The test result comes back positive. Calculate the probability that the patient has the disease given that they got a positive result.	4 marks

Exercise 2	Calc. : 🗸
When you play roulette at a casino, we can bet on one of the 37 numbers from 0 to 36. Alterna-	
tively you can bet on the colour red or black (0 is coloured green).	
For the remainder of the question, consider a bet of ≤ 100 .	
1. If you bet on red and the ball falls on one of the 18 red compartments, your money is doubled.	
Calculate the Expected value of the random variable X : « amount won betting on red ».	3 marks
2. Compare this value with the Expected value of the random variable Y: « Amount won betting on a specific number ». If the ball stops in the compartment you have bet on, you receive 36 times what you bet.	4 marks

Exercise 3	Calc. : 🗸
From a group of 10 runners and 15 non-runners, a university researcher selects 5 people for a study on cardio-vascular disease.	
1. How many groups is it possible to make if we make no distinction between the runners and the non-runners?	3 marks
2. How many groups is it possible to make if we want exactly three runners participating in the study?	3 marks
3. What is the probability that, given a random selection of participants in the study, that there would be exactly three runners in the group?	4 marks
there would be exactly three runners in the group?	

Exercise 4	Calc. : 🗸
Consider the function f defined by $f(x) = -\frac{x^3}{3} - \frac{x^2}{2} + 6x + 4$.	
1. Determine an expression for f' , the derivative of the function f .	4 marks
2. Study the sign of f' (make a sign table).	6 marks
3. Determine the interval in which the function f is increasing.	4 marks

Exercise 5	Calc. : 🗸
The function $f(x) = 60 \sin\left(\frac{2\pi}{30}(t-7,5)\right) + 75$ can be used to model the height of a passenger above	
the ground on the London Eye, where t is the time in minutes after departure.	
1. Determine the period of the London Eye.	2 marks
2. Determine the amplitude of the London Eye.	3 marks
3. Use this function to estimate the height of a passenger 18 minutes after departure.	2 marks
4. What height above the ground is the boarding platform?	3 marks
5. Sketch the graph of the function $f(x)$.	4 marks
6. Use your graph to estimate how long a passenger would spend more than 100 m above the ground.	3 marks

