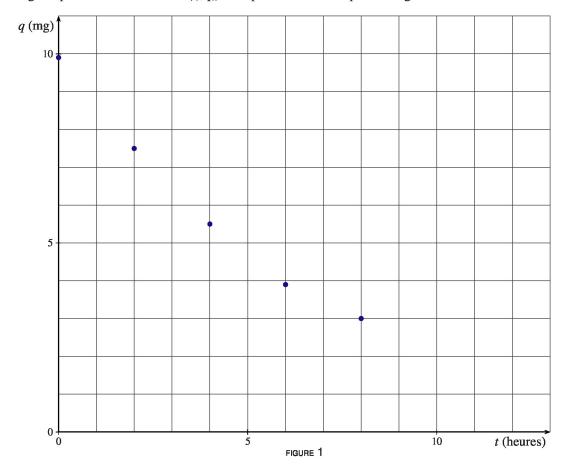
Exercise 1 Calc.: ✓


Un médicament est injecté par voie intraveineuse. Dans les heures qui suivent, la substance est éliminée par les reins. La quantité q_i présente dans le sang (q_i en milligrammes) à l'instant t_i (t_i , en heures) a été mesurée par des prises de sang toutes les deux heures.

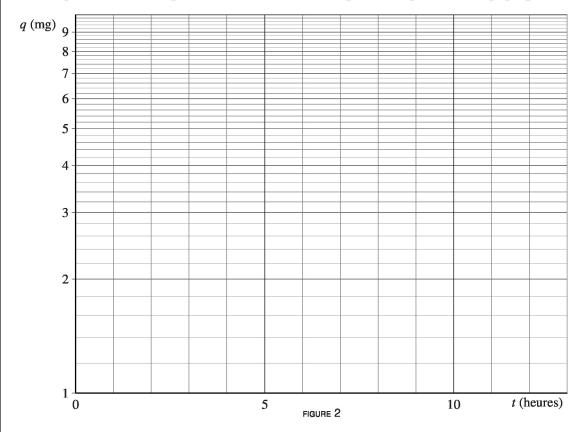
t_i (heures)	0	2	4	6	8
$q_i (\text{mg})$	9,9	7,5	5,5	3,9	3

PARTIE A

Modélisation par une fonction affine

Le nuage de points associé à la série $(t_i; q_i)$ est représenté dans le repère orthogonal ci-dessous.

- 1. Déterminer, à l'aide de la calculatrice, une équation de la droite D d'ajustement affine de q en t par la méthode des moindres carrés (coefficients arrondis à 10^{-2}); tracer la droite D sur la figure 1.
- 2. En supposant que ce modèle reste valable pendant 12 heures, quelle estimation obtient-on de la quantité de médicament présente dans le sang au bout de 12 heures? Qu'en pensez-vous?


PARTIE B

Recherche d'un modèle mieux adapté

- 1. Représenter dans le repère semi-logarithmique ci-dessous le nuage de point associé à la série $(t_i; q_i)$. Quel type d'ajustement l'allure de cette représentation permet-elle d'envisager?
- 2. On pose $y_i = \ln q_i$. Recopier et compléter le tableau ci-dessous (valeurs arrondies au centième).

t_i (heures)	0	2	4	6	8
y_i (mg)					

- 3. Déterminer à l'aide de la calculatrice une équation de la droite d'ajustement affine de y en t par la méthode des moindres carrés (coefficients arrondis au centième).
- 4. Montrer que l'expression de q en fonction de t obtenue à partir de cet ajustement est de la forme $q = ae^{-bt}$ où a est arrondi à l'unité et b au centième.
- 5. Étudier le sens de variation de la fonction f définie sur [0; 15] par : $f(t) = 10e^{-0.15t}$. Tracer sa courbe représentative C sur la figure 1.
- 6. On suppose que ce nouveau modèle reste valable pendant 12 heures. Calculer à 10⁻¹ près la quantité de médicament présente dans le sang au bout de 12 heures. Placer le point correspondant sur le graphique.

PARTIE C

- 1. Calculer $\frac{f(t+1) f(t)}{f(t)}$. Interpréter le résultat par une phrase concernant le pourcentage de variation de la quantité de médicament présente dans le sang.
- 2. Le médicament reste efficace tant que la quantité présente dans le sang reste supérieure à 2 mg. Déterminer graphiquement, à 1 heure près par défaut, la durée d'efficacité de l'injection.
- 3. Calculer, à un dixième de milligramme près, la quantité moyenne de médicament présente dans le sang pendant les 10 heures qui suivent l'injection.