Exercise 1 Calc. : X

State if the following sentences are True (T) or False (F) and justify your statements:	
a) The point A(e; 1) belongs to the function $y = \ln(x)$.	1 mark
b) When a function is positive, its first derivative is necessarily increasing.	1 mark
c) Let f be a function defined by $f(x) = e^x - 1$. Its first derivative is equal to zero for $x = 0$.	1 mark
d) Let f be a function defined over \mathbb{R} such that $\int_0^3 f(x) dx > 0$ and $\int_3^6 f(x) dx < 0$.	1 mark
We can thus write: $\int_0^6 f(x) \mathrm{d}x = 0$	
e) A set of bivariate data points $(x; y)$ has a linear correlation coefficient of -0.95 . We can thus state that the correlation is weak.	1 mark

Exercise 2	Calc.: 🗶
Déterminer si les phrases suivantes sont vraies (V) ou fausses (F) et justifier à chaque fois :	
a) Le point A(e; 1) appartient au graphique de la fonction $y = \ln(x)$.	1 mark
b) Quand une fonction est positive, sa dérivée est nécessairement croissante.	1 mark
c) Soit f une fonction définie par $f(x) = e^x - 1$. Sa dérivée est égale à zéro pour $x = 0$.	1 mark
d) Soit f une fonction définie sur \mathbb{R} telle que $\int_0^3 f(x) \mathrm{d}x > 0$ et $\int_3^6 f(x) \mathrm{d}x < 0$.	1 mark
On peut ainsi écrire : $\int_0^6 f(x) dx = 0$	
e) Un nuage de points $(x; y)$ a un coefficient de corrélation linéaire de $-0,95$. On peut donc affirmer que la corrélation est faible.	1 mark