Calc.: ✓

Exercise 1 Use the calculator for questions b), c), d), e), f), h), i), j) and m)

Frog and Toad, Arnold Lobel, 1970–1979

The value of a bicycle, in euros, depending on the time t in years, can be described by the function f given $f(t) = 750 + 2\ 250 \cdot \mathrm{e}^{-0.2t}$.

_	• 1	
a)	Calculate the value of the bike when new.	1 mark
b)	Calculate the value of the bike after one year, and after three years.	2 marks
c)	How much does the bicycle lose in value in the first year? Round to the nearest $\mathfrak{C}1$.	$1~\mathrm{mark}$
d)	By what percentage has the value of the bicycle decreased after three years? Round to the nearest 1% .	3 marks
e)	Solve the equation $f(t) = 1500$ and interpret the result.	3 marks
f)	Determine value of the bicycle in the long-term based on this model.	2 marks
g)	Calculate the derivative $f'(t)$.	2 marks
h)	Calculate $f'(5)$ and interpret the result.	2 marks

Tandem, Marke William, 1950

A 48 cm³ petrol engine is mounted on the bicycle.

The fuel consumption, measured in liters for 100 km, can be calculated as a function of the speed using the function $h(x) = 0.04x + \frac{25}{x}$, where x is the speed in km/h.

i) Graph the function h for $5 \le x \le 50$ using the following table of values.

2 marks

x	5	10	15	20	25	30	35	40	45	50
h(x)										

Round the function values to one decimal place.

Graph paper is available.

j) Calculate the petrol consumption at 25 km/h in liters for 100 km.

- 1 mark
- k) Read from your graph, for which speed, x, the fuel consumption is the least.
- 2 marks

1) Calculate an antiderivative for the function h.

- 2 marks
- m) The bike is pushed and drives off at a speed of 5 km/h. It is then steadily accelerated to 50 km/h.
- 2 marks

Calculate the integral $\int_5^{50} h(x) \, \mathrm{d}x$ with the calculator. Round to the nearest whole number.

Remark (this is not a question!): The value $\frac{1}{45} \int_5^{50} h(x) dx$ is the average fuel consumption per 100 km when accelerating from 5 km/h to 50 km/h.

Exercise 2	Calc. : ✓
Use the calculator for questions a, b, c, d, e, g, i, and k. Round your numerical answers to the nearest whole number. Jane is starting an online business, using a large social media base to promote her website.	
The weekly visits to her website over the first year can be modelled by the following function: $f(t) = 15 \cdot \ln(3t + 1)$, where $f(t)$ represents the number of hundreds of visitors her website got and t represents the time measured in weeks with $0 \le t \le 52$.	
a) Calculate the number of visitors the website got in the first week, and the number of visitors the website got in the last week of the year.	2 marks
b) Calculate the total number of visits to the website in the first three weeks.	2 marks
c) How long did it take for her to pass 20 000 visits in total from the moment she launched her website?	4 marks
d) Calculate the integral $\int_0^{26} f(x) dx$ with the calculator and interpret the result in the given situation.	3 marks
e) Calculate $f'(26)$ to 2 decimal places and interpret the result.	3 marks
Jane assumes that the rate of change will remain stable from week 26, and the number of visitors will now grow at the constant rate $m = 0.6$. It models the number of visitors (in hundreds) for $26 \le t \le 52$ with the function $g(t) = 0.6 \cdot t + 50$.	
f) Explain how Jane came up with this equation to model future growth.	2 marks
g) Calculate how many visitors Jane is expecting in the last week of the year using this new model.	1 mark

	i
h) Write an integral that allows to calculate the total number of visits during the last 26 weeks.	2 marks
In reality there were 7820 visitors in the last week of the first year.	i
i) Which of the two models turns out to be better for predicting this number?	2 marks
One of the objects Jane sells on her website is a mic-stand base. Its profile can be modelled using	i
the function $h(x) = \frac{4}{0,5x-1,4}$ on the interval $-5 \le x \le 2$. Each unit on x and y axis represents 1 cm.	
j) Write the integral required to calculate the volume of revolution using the formula $V = \int_a^b \pi (f(x))^2 dx$.	2 marks
k) Calculate the volume of metal used to make the mic-stand base, in cubic centimeters, to the nearest cm ³ .	2 marks