Exercise 1 Calc.: ✓

Gabriella is playing with her remote-controlled toy car. The following equation describes the path of the car:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 16 \\ 1 \end{pmatrix} + t \begin{pmatrix} -12 \\ 5 \end{pmatrix}$$

The distance units are metres, and the time is in minutes.

- 1. Write down the initial position of the car.
- 2. Calculate the position of the car after 15 seconds.
- 3. Compute the speed of the car.

Grandma is watching Gabriela from point P(-1, -6)

4. Find the shortest distance from point P to the path of the car.

The edge of the cliff is at the point $\left(0, \frac{23}{3}\right)$ and Grandma walks in that direction with velocity

vector $\begin{pmatrix} 3 \\ 41 \end{pmatrix}$.

5. After how many minutes will the car reach the edge of the cliff?

2 marks

1 mark

1 mark

1 mark

3 marks

6. Will Grandma be able to catch the car before it falls down the cliff if she starts moving at the same time as the car? Explain your answer.

4 marks

1 mark

 $1 \, \text{mark}$

1.5 marks

2.5 marks

1.5 marks

1.5 marks

2 marks

3 marks

Exercise 2 $\operatorname{Calc.}:\checkmark$

1. A contractor must carry out work for a public body. If they do not complete the work on time, they will have to pay a daily penalty: $100 \, \mathfrak{C}$ on the first day, $110 \, \mathfrak{C}$ on the second day, and so on with a daily increase of $10 \, \mathfrak{C}$ a day.

Let u_n be the penalty on the n-th day. Thus, the first term in sequence u is $u_1=100$.

- (a) State the nature and characteristics of sequence u.
- (b) Explain why $u_n = 90 + 10n$ for all values of integer n.
- (c) On what day would the daily penalty amount to 220 \bigcirc ?
- (d) What total amount of penalty would the contractor have paid after 20 days of delay?
- 2. On another construction site, the penalty for delay is 80 € on the first day and then increases

by 10% each day. Let v_n be the amount of the penalty on day n in this case.

- () () () () () () () () ()
 - (a) Compute the values of the first three terms v_1 , v_2 and v_3 .
 - (b) Explain why $v_n = 80 \cdot 1.10^{n-1}$ for all values of integer n.
 - (c) What is the total amount of penalty the contractor would have paid after 20 days of delay?
- 3. From which day onwards does the amount of the daily penalty in this case exceed that of the first case?

1. We consider the functions $x\mapsto\cos x$ and $x\mapsto-\sin x$ on $[-\pi,\pi]$ and their graphic representations below:

Justify that the only solutions of the equation $\cos x + \sin x = 0$ on $[-\pi;\pi]$ are $\frac{-\pi}{4}$ and $\frac{3\pi}{4}$.

3 marks

- 2. Let f be the function defined on $[-\pi; \pi]$ by: $f(x) = e^x \cdot \sin x$ We note C_f its representative curve in a coordinate system.
 - (a) Determine the variations of the function f on $[-\pi, \pi]$, specifying the abscissa, the value and the nature of each extremum.

2 marks

(b) Determine an equation of the tangent to the curve C_f at the point of abscissa $\frac{\pi}{2}$.

 $2~\mathrm{marks}$

(c) On what interval is C_f entirely above each of its tangents? To justify.

2 marks

(d) Using two successive integrations by parts, calculate the exact value of the integral:

2 marks

$$\int_{-\pi}^{\pi} f(x) \, \mathrm{d}x.$$

A company is conducting a study into the relationship between the experience and salary of their staff. The experience and salaries of 12 employees were tabulated.

Experience	0	2	4	6	8	10	12	14	16	18	20	22
x (years)												
Salary y	4 200	4 800	4 600	5 000	5 200	5 600	5 650	5 660	5 500	6 000	5 831	6 200
(€)												

1. One of the following correlation coefficients fits these data. Which is it?

1 mark

$$r_1 = 0.95$$
, $r_2 = -0.95$ or $r_3 = 1$?

Explain without referring to any computations.

2. Compute the coordinates of the average point for these data, to the nearest integer.

2 marks

3. The equation of regression line with the method of the least squares is y = a + bx, where

2 marks

$$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \quad \text{and} \quad a = \overline{y} - b\overline{x}.$$

Use the information given below to compute the values of coefficients a and b. Give answers to 2 decimal places.

x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
0	-11	121
2	-9	81
4	-7	49
6	-5	25
8	-3	9
10	-1	1
12	1	1
14	3	9
16	5	25
18	7	49
20	9	81
22	11	121

$$\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y}) = 45 \ 009$$

4. Use the linear model f(x) = 78.7x + 4488 to estimate the salary of an employee with 40 years of experience.

2 marks

The salaries of the employees of this company are normally distributed with mean $\mu=5$ 353 and standard deviation $\sigma=553$.

5. Mr. Smith, an employee of this company, is paid 6 459 \bigcirc . What proportion of the employees of this Company are paid less that Mr. Smith?

 $1.5 \, \mathrm{marks}$

6. Compute the probability that an employee's salary is greater than 7 636 \odot and comment your answer for question 5.

1.5 marks

In another company, the salaries are normally distributed with standard deviation s = 620.

7. Knowing that the probability that an employee's salary is greater than 5 000 $\mathfrak C$ is approximately 0.107, find the mean salary in that company. Write your answer to the nearest whole number.

3 marks