Exercise 1 Calc.: ✓

For common motor vehicles we consider the two variables *Engine size* (cylinder volume) and *Fuel economy* (number of kilometres travelled for every litre of petrol).

The following data were collected for 10 vehicles.

Car	A	В	С	D	Е	F	G	Н	I	J
Engine size	1.1	1.2	1.2	1.5	1.5	1.8	2.4	3.3	4.2	5.0
Fuel economy	21	18	19	18	17	16	15	20	14	11

For example, the car A has an *engine size* of 1.1, and a *fuel economy* of 21, meaning it will travel 21 kilometres for 1 litre of petrol.

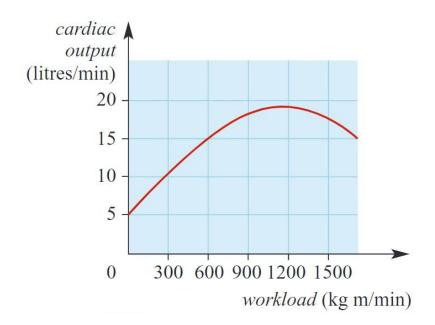
1. (a) Construct a scatter diagram of the above data, the engine size being the independent	2 marks
variable. Use the graph paper on the annex page (to be handed in).	

	variable. Use the graph paper on the annex page (to be handed in).	
(b)	Describe the correlation between the two variables.	

(c) Which car gives a fuel economy reading that does not support the general trend?	1 mark
Note: this outlier is not a recording error, so it cannot be removed.	

(d)	Use technology to calculate Pearson's correlation coefficient r (correct to 3 d.p.).	2 marks
ŲΨ	.) Osc declinology to calculate I carson's correlation coefficient / (correct to 5 d.p.).	2 mans

(e) Use technology to find	the equation of the regression li	ine. Round off the gradient and
y-intercept to 1 d.p.		


(f) Use your regression line to **estimate** the fuel economy for an engine size of 2.

2 marks

2 marks

 $2~{\rm marks}$

Cardiac output is an important factor in athletic endurance. The graph shows a stress-test graph of cardiac output (measured in litres/min of blood) versus workload (measured in kg m/min).

- 2. (a) **Estimate** the average rate of change of cardiac output with respect to workload as workload increases from 0 to 1 500 kg m/min (correct to 4 d.p.).
 - d 3 marks

2 marks

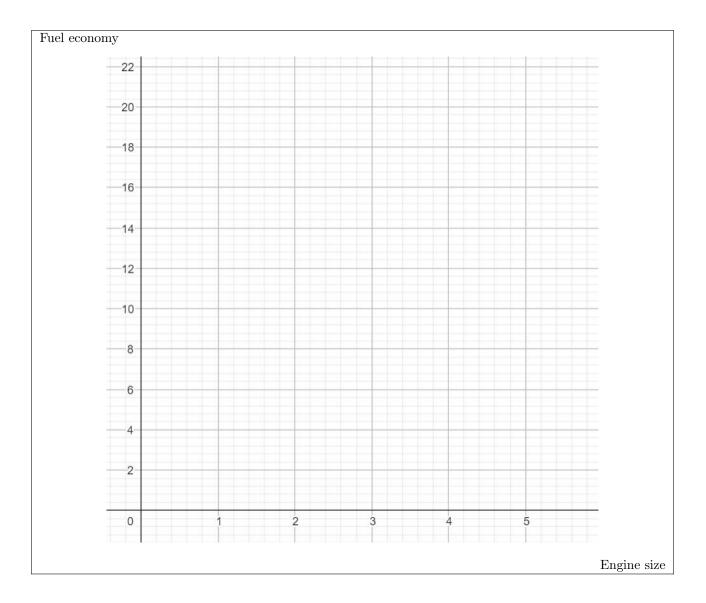
(b) Estimate the instantaneous rate of change of cardiac output with respect to workload at the point where the workload is 450 kg m/min (correct to 4 d.p.).(c) There is a moment when the instantaneous rate of change of cardiac output with respect to

workload is equal to zero. Estimate for what workload that happens. Justify properly

2 marks

your answer.

For a new TV show, the main characters are two men, one woman and two girls.


At the end of the first round of castings, there remain 5 actors, 4 actresses and 6 girls.

3. (a) **Determine** how many different casts are possible if there are no restriction.

2 marks

- (b) One actress and one girl are actually mother and daughter. **Determine** the probability that they would both be chosen for the show (correct to 3 d.p.).
- 3 marks
- (c) The producer wants his son, who is one of the 5 remaining actors, to be part of the cast. And in the mean time, two of the 6 girls declined the role. **Determine** how many possible casts there are.

2 marks

Exercise 2 Calc.: ✓

Pour les véhicules à moteur courants, nous considérons les deux variables *Taille du moteur* (volume du cylindre) et *Consommation de carburant* (nombre de kilomètres parcourus pour chaque litre d'essence).

Les données suivantes ont été collectées pour 10 véhicules.

Voiture	A	В	С	D	Е	F	G	Н	I	J
Taille du moteur	1,1	1,2	1,2	1,5	1,5	1,8	2,4	3,3	4,2	5,0
Consommation de carburant	21	18	19	18	17	16	15	20	14	11

Par exemple, la voiture A a une taille de moteur de 1,1 et une consommation de carburant de 21, ce qui signifie qu'elle parcourra 21 kilomètres pour 1 litre d'essence.

1. (a)	Construire u	n nuage de points	des données	ci-dessus,	la taille di	ı moteur	étant la var	iable
	indépendante.	Utilisez le papier	$millim\'etr\'e$	figurant su	ır la page	annexe	(à rendre av	ec la
	copie).							

2 marks

(b) **Décrire** la corrélation entre les deux variables.

2 marks

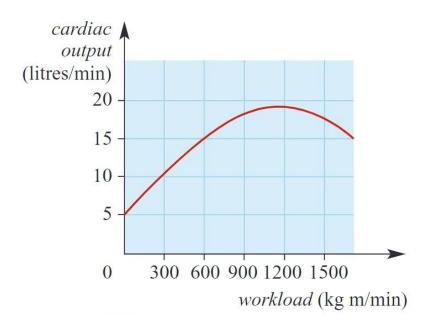
(c) Quelle voiture affiche une consommation de carburant qui ne correspond pas à la tendance générale ?

 $1 \, \text{mark}$

Remarque : cette valeur aberrante ne constitue pas une erreur d'enregistrement et ne peut donc pas être supprimée.

(d) Utiliser la calculatrice pour **calculer** le coefficient de corrélation de Pearson r (arrondir au millième).

2 marks


(e) Utilisez la technologie pour **trouver** l'équation de la droite de régression. Arrondissez la pente de la droite et l'ordonnée à l'origine au dixième.

2 marks

(f) Utiliser cette droite de régression pour **estimer** la consommation de carburant pour une voiture avec une taille de moteur de 2.

 $2~\mathrm{marks}$

Le débit cardiaque est un facteur important dans l'endurance sportive. Le graphique montre un graphique de test d'effort du débit cardiaque (mesuré en litres/min de sang) par rapport à la charge de travail (mesurée en kg m/min).

2. (a) **Estimer** le taux moyen de variation du débit cardiaque par rapport à la charge de travail lorsque la charge de travail augmente de 0 à 1 500 kg m/min (arrondir à 4 chiffres après la virgule).

e de 3 marks

(b) Estimer le taux instantané de changement du débit cardiaque par rapport à la charge de travail au point où la charge de travail est de $450~\mathrm{kg}$ m/min (arrondir à 4 chiffres après la virgule).

2 marks

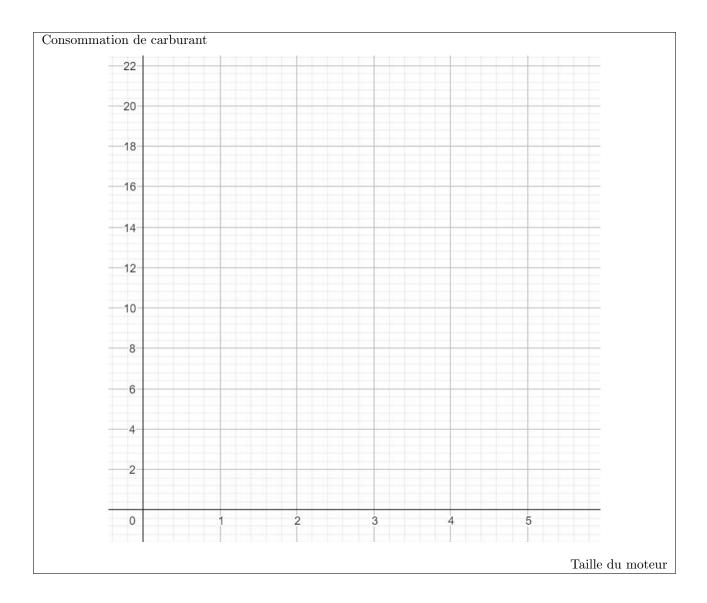
(c) Il arrive un moment où le taux instantané de variation du débit cardiaque par rapport à la charge de travail est égal à zéro. **Estimer** de la charge de travail qui se produit. **Justifier** correctement la réponse.

2 marks

Pour une nouvelle émission télévisée, les personnages principaux sont deux hommes, une femme et deux filles.

À l'issue du premier tour de casting, il reste 5 acteurs, 4 actrices et 6 filles.

3. (a) **Déterminer** combien de choix de personnages différents sont possibles s'il n'y a aucune restriction.


2 marks

(b) Une actrice et une fille sont en réalité mère et fille. **Déterminer** la probabilité qu'elles soient toutes les deux choisies pour le spectacle (arrondir au millième).

3 marks

(c) Le producteur souhaite que son fils, qui fait partie des 5 acteurs restants, soit choisi pour jouer dans l'émission. Et entre-temps, deux des 6 filles ont décliné le rôle. **Déterminer** combien de choix de personnages sont possibles.

2 marks

