

Exercise 4 Let f and g be functions that are defined as follows: $f(x) = x^2 - 2x + 2$ and g(x) = x + 2and shown in the graph on the right.

a) **Explain** what $\int_0^3 |f(x) - g(x)| dx$ represents graphically (you can reproduce the graph on your answer sheet and show your answer on the graph).

b) Calculate
$$\int_0^3 |f(x) - g(x)| \, \mathrm{d}x.$$

Exercise 5		Calc. : 🗡		
The value of an electric vehicle newly purchased can be modeled by the function:				
$V(t) = 40\ 000 \times \mathrm{e}^{\mathrm{ln}(0.80)t}$				
where $V(t)$ is the value of the vehicle (in euros), t years after purchase.				
a) Identify the formula equivalent to the formula $V(t)$ among the following 4 proposals V_1 , V_2 , V_3 and V_4 :				
$V_1(t) = 40\ 000 \times \ln(0.80)t$	$V_2(t) = 40\ 000 \times 0.80t$			
$V_3(t) = 0.80 \times \ln(40\ 000)t$	$V_4(t) = 0.80 \times 40\ 000t$			
b) Determine the initial purchase price of the vehicle (new).				
c) Calculate the value of the vehicle one year after purchase.				

Exercise 7

Exercise 7	Calc. : 🗡
A waiter, working in a pizzeria, notices that, on average, 40% of the customers are families, the	5 marks
rest are couples.	
He also notices that:	
• Out of 100 families, 70 leave a tip;	
• 4 out of 10 couples leave a tip.	
We are interested in the following events:	
• F: "the table is occupied by a family";	
• C: "the table is occupied by a couple";	
• T: "The waiter gets a tip."	
a) Present all the information of the statement in a probability tree or a two-way table.	
b) Determine the probability that the table was occupied by a family knowing that the waiter received a tip.	

Exercise 8	Calc. : 🗡
Out of 1500 students at a university, 1200 watch a series during the week, out of which 150 also	
go to the cinema on weekends.	
There are 200 students going to the cinema on weekends, without having watched a series during	
the week.	
Determine if going to the movies on the weekend is dependent on watching a series on weekdays.	5 marks

Exercise 9 An urn contains 2 red balls and 3 white balls. We draw 3 balls at random.							Calc. : X 5 marks	
a) Please indicate under what condition(s) this situation could be considered as a binomial distribution.								
b) Assuming the condition(s) of a) is/are verified, calculate the probability of obtaining only red balls at the end of the 3 draws.								
Exercise 10								Calc. : 🗡
Let X be a random	variable.							
The table below shows the probability distribution of X :								
	x _i	10	20	30	40	50		

0.2

3*a*

0.35

5 marks

0.01

а

 p_i **Calculate** the expected value of the variable X.