A skateboarder launches himself on a ramp in a skate park. We assume the position of the skater on the ramp can be given by a point with coordinates (x; h(x)) in the following graph:

5 marks

The function h is defined on the interval [0; 5] by:

$$h(x) = x^2 - 6x + 5$$

where h(x) is expressed in metres.

- a) **Determine** the height at which the skateboarder launches himself onto the ramp.
- b) Calculate the value of h(1) and h(5).
- c) **Determine** the set of x values for which the skater is below his end point.

$$f(x) = \frac{1}{3}x^3 - 2x^2 + 3x \qquad \text{for } 0 < x < 3$$

where x is the distance in meters and f(x) is the height in thousands of meters. We give you the graph that represents this function f:

Determine the height of the mountain, rounded to the nearest hundreds of meters.

 $5~\mathrm{marks}$

Exercise 3

Determine the equation of the tangent to the graph of f(x) in the point with x = 1.

5 marks

Let f and g be functions that are defined as follows:

$$f(x) = x^2 - 2x + 2$$
 and $g(x) = x + 2$

and shown in the graph on the right.

- a) **Explain** what $\int_0^3 |f(x) g(x)| dx$ represents graphically (you can reproduce the graph on your answer sheet and show your answer on the graph).
- b) Calculate $\int_0^3 |f(x) g(x)| dx.$

Exercise 5

Calc.: X 5 marks

The value of an electric vehicle newly purchased can be modeled by the function:

$$V(t) = 40\ 000 \times e^{\ln(0.80)t}$$

where V(t) is the value of the vehicle (in euros), t years after purchase.

a) Identify the formula equivalent to the formula V(t) among the following 4 proposals V_1 , V_2 , V_3 and V_4 :

$$V_1(t) = 40\ 000 \times \ln(0.80)t$$

$$V_2(t) = 40\ 000 \times 0.80t$$

$$V_3(t) = 0.80 \times \ln(40\ 000)t$$

$$V_4(t) = 0.80 \times 40\ 000t$$

- b) **Determine** the initial purchase price of the vehicle (new).
- c) Calculate the value of the vehicle one year after purchase.

5 marks

Since 2004, a company's profits have made a worrisome evolution.

The profits (in hundreds of thousands of euros) of the last 18 years are shown in the graph below:

- a) Give the names of the two types of fundamental mathematical models that could be used to model this evolution.
- b) **Predict** the future year in which profits will again be at a minimum, if the evolution continues in this way.
- c) **Interpret** what will happen to this company between now and 2030, if the evolution continues in this way.

Exercise 7 Calc.: X

A waiter, working in a pizzeria, notices that, on average, 40% of the customers are families, the star are couples.

He also notices that:

- Out of 100 families, 70 leave a tip;
- 4 out of 10 couples leave a tip.

We are interested in the following events:

- F: "the table is occupied by a family";
- C: "the table is occupied by a couple";
- T: "The waiter gets a tip."
- a) **Present** all the information of the statement in a probability tree or a two-way table.
- b) **Determine** the probability that the table was occupied by a family knowing that the waiter received a tip.

Exercise 8

Out of 1500 students at a university, 1200 watch a series during the week, out of which 150 also go to the cinema on weekends.

There are 200 students going to the cinema on weekends, without having watched a series during the week.

Determine if going to the movies on the weekend is dependent on watching a series on weekdays.

5 marks

Exercise 9

An urn contains 2 red balls and 3 white balls. We draw 3 balls at random.

a) Please indicate under what condition(s) this situation could be considered as a binomial distribution.

b) Assuming the condition(s) of a) is/are verified, calculate the probability of obtaining only

red balls at the end of the 3 draws.

Exercise 10 Calc.: X Let X be a random variable. The table below shows the probability distribution of X: 10 20 30 40 50 x_i 0.2 3*a* 0.35 0.01 p_i Calculate the expected value of the variable X. $5~\mathrm{marks}$