

Les courbes \mathcal{H}_1 et \mathcal{H}_2 représentées dans le repère orthonormal ci-dessus ont respectivement pour équation

$$y = \frac{1}{x}$$
 et $y = \frac{2}{x}$.

On note \mathcal{D}_2 le domaine délimité par les courbes \mathcal{H}_1 et \mathcal{H}_2 et les droites d'équation x = 2 et x = 3. On note \mathcal{D}'_2 le domaine délimité par l'axe des abscisses, la courbe \mathcal{H}_1 et les droites d'équation x = 2 et x = 3.

- 1. Colorier les domaines \mathcal{D}_2 et \mathcal{D}'_2 d'une couleur différente et montrer qu'ils ont la même aire. Soit *n* un entier naturel strictement positif. On note u_n l'aire du domaine \mathcal{D}_n délimité par les courbes \mathcal{H}_1 et \mathcal{H}_2 et les droites d'équation x = n et x = n + 1.
- 2. Exprimer u_n en fonction de n.
- 3. Montrer que la suite (u_n) est décroissante. On pourra comparer les nombres n(n+2) et $(n+1)^2$.
- 4. Étudier la convergence de la suite (u_n) .
- 5. Déterminer la plus grande valeur de *n* telle que l'aire du domaine \mathcal{D}_n reste supérieure à $\frac{1}{10}$ d'unité d'aire. Soit *N* cette valeur.
- 6. Calculer l'aire du domaine délimité par les courbes \mathcal{H}_1 et \mathcal{H}_2 et les droites d'équation x = 1 et x = N.