Exercise 1 Calc.: ✓

Teil 1

Mary führt einen Bauernhof.

Die Milchproduktion im Betrieb kann durch die Funktion f modelliert werden, gegeben durch

$$f(x) = -0.0028x^2 + 0.57x$$
, $50 \le x \le 90$,

wobei x die Anzahl der Kühe im Betrieb ist und f(x) die durchschnittliche Milchproduktion pro Tag gemessen in hL darstellt (1 hL = 1 Hektoliter = 100 Liter).

a) Berechnen Sie die durchschnittliche Milchproduktion von 70 Kühen pro Tag.

2 marks

b) **Bestimmen** Sie, wie viele Kühe Mary braucht, um eine durchschnittliche Milchproduktion von 25 hL oder mehr pro Tag zu erreichen.

3 marks

c) Kann das Modell auf 205 Kühe ausgeweitet werden? Begründen Sie Ihre Antwort.

2 marks

Teil 2

d) Im Sommer folgt die tägliche Milchproduktion pro Kuh einer Normalverteilung mit dem Erwartungswert $\mu=48$ Liter und der Standardabweichung $\sigma=16$ Liter.

Berechnen Sie die Wahrscheinlichkeit, dass eine zufällig ausgewählte Kuh an einem Sommertag mehr als 40 Liter Milch gibt. Geben Sie Ihre Antwort auf 3 Dezimalstellen genau an.

2 marks

e) Es wird vorausgesetzt, dass die Wahrscheinlichkeit, dass eine zufällig ausgewählte Kuh mehr als 40 Liter Milch pro Tag gibt, gleich 0,69 ist. Derzeit hat Mary 80 Kühe.

Berechnen Sie die Wahrscheinlichkeit, dass weniger als 60 dieser Kühe mehr als 40 Liter Milch pro Tag geben.

2 marks

Teil 3

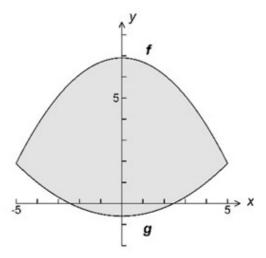
Die folgende Tabelle zeigt die jährliche Niederschlagsmenge (gemessen in cm) auf dem Betrieb in den letzten 10 Jahren.

Jahr	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
x = Jahre	0	1	2	3	4	5	6	7	8	9
nach 2013										
y = Nieder-	123	125	117	115	120	113	110	100	108	105
schlag (cm)										

f) **Zeichnen** Sie ein Streudiagramm, das die Daten aus der Tabelle darstellt, und **beschreiben** Sie die Korrelation, indem Sie dieses Diagramm interpretieren.

4 marks

g) **Bestimmen** Sie eine Gleichung der Form $y = m \cdot x + b$ für die lineare Regression von y in Abhängigkeit von x indem Sie die Daten der Tabelle verwenden.


4 marks

- Zeichnen Sie die Regressionsgerade in das gleiche Diagramm ein.
- h) **Erklären** Sie, warum ein solches lineares Regressionsmodell für diese Daten über viele Jahre hinweg möglicherweise nicht geeignet sein könnte.

2 marks

Teil 4

Auf dem Bauernhof gibt es einen Teich, der durch die folgende Abbildung dargestellt wird (1 Einheit = 1 Meter) :

Die Grenzen dieses Teichs werden durch die Graphen der Funktionen f und g dargestellt, wobei $f(x) = -0, 2x^2 + 6, 9, \quad -5 \le x \le 5$ für die obere Begrenzung und $g(x) = 0, 1x^2 - 0, 6, \quad -5 \le x \le 5$ für die untere Begrenzung gilt.

i) Berechnen Sie den Flächeninhalt dieses Teiches.

4 marks

Exercise 2 Calc.: ✓

Teil 1

a) In Helsinki hatten im August 2021 die Fahrten mit einem öffentlichen Fahrrad eine durchschnittliche Entfernung von 2,25 km und eine Standardabweichung von 16,04 km.

Erklären Sie, was eine so große Standardabweichung verursacht haben könnte.

2 marks

Öffentliche Fahrräder in Helsinki

b) In einem bestimmten Zeitraum betrug die durchschnittliche Dauer der Fahrten $\mu=645$ Sekunden und die Standardabweichung betrug $\sigma=271$ Sekunden. Es wird angenommen, dass die Fahrtdauer einer Normalverteilung folgt.

Berechnen Sie die Wahrscheinlichkeit, dass eine Fahrt länger als 12 Minuten dauerte.

3 marks

Teil 2

Eine Erhebung für den Zeitraum 2009–2019 hat gezeigt, dass der Verkauf von E-Bikes in der Europäischen Union durch die Funktion N modelliert werden kann, gegeben durch

$$N(t) = 0.0756 \cdot e^{0.163t + 2.03},$$

wobei t die Anzahl der Jahre nach 2009 ist und N(t) die Anzahl der verkauften E-Bikes in Millionen ist.

c) Schreiben Sie die Formel für N(t)in die folgende Form um $N(t) = K \cdot A^t$.

2 marks

d) **Bestimmen** Sie anhand dieses Modells den jährlichen prozentualen Anstieg des Verkaufs von E-Bikes.

2 marks

e) Seit 2009 liegt die Gesamtzahl aller verkauften Fahrräder (einschließlich E-Bikes) in Europa etwa konstant bei 20 Millionen Fahrrädern pro Jahr.

Schätzen Sie das Jahr, in dem die Zahl der verkauften E-Bikes mehr als die Hälfte der Gesamtzahl der verkauften Fahrräder ausmachen wird.

3 marks

Teil 3

Die Höhe h(t) in Zentimetern (cm) eines Fahrradpedals über dem Boden zum Zeitpunkt t in Sekunden ist gegeben durch $h(t) = a \cdot \sin(b \cdot t) + d$.

f) Die maximale Höhe des Pedals beträgt 49 cm und die minimale Höhe beträgt 9 cm.

Bestimmen Sie a und d.

3 marks

g) Die Zeit, die für eine volle Pedalumdrehung benötigt wird, beträgt 1,5 Sekunden.

Berechnen b.

3 marks

Erklären Sie , welche Informationen b über die Drehbewegung des Pedals liefert.

Teil 4

Auf einer Website (Euro-Velo) für Radfernwege in Europa ist die Rheinroute die meistbesuchte Route

Im Jahr 2020 besuchten 142 124 der 1 644 417 Besucher der Website die Rheinroute.

Im Jahr 2021 besuchten bei einer Stichprobe von 2 000 Besuchern der Website, 156 die Rheinroute.

Die Verantwortlichen von Euro-Velo wollen herausfinden, ob der Anteil der Besucher der Rheinroute von 2020 bis 2021 zurückgegangen ist. Deshalb führen sie einen Hypothesentest mit einem Signifikanzniveau von 5% durch.

p gibt den Anteil aller Besucher der Website an, die im Jahr 2021 die Rheinroute besuchten.

h) Überprüfen Sie, dass die Nullhypothese für diesen Test $H_0: p = 0,086$ lautet.

2 marks

i) Bestimmen Sie, ob der Test links- oder rechtsseitig ist. Begründen Sie Ihre Antwort.

2 marks

j) Berechnen Sie die Wahrscheinlichkeit, dass die Anzahl der Besucher der Rheinroute aus einer Zufallsstichprobe von 2 000 Besuchern der Website kleiner oder gleich 156 ist, wobei angenommen wird, dass H_0 wahr ist.

3 marks

Entscheiden Sie, ob H_0 abgelehnt werden kann. Begründen Sie Ihre Entscheidung.