Exercise 1	Calc. : 🗡
A tetrahedral dice is labelled with four numbers: 1, 2, 3 and 4.	
The dice is thrown three times.	
Let X represent the number of times a 1 is obtained.	
Determine the probability distribution of the variable X and calculate its expected value.	6 marks
Exercise 2	Calc. : 🗡
In a family of 4 people (two parents and their two children), each has a smartphone of the same	
make and model.	
The probability that this "basic" model will fail during the year is 20%.	
Calculate the probability that exactly two of the members of this family will have their smartphone	6 marks
fail during the year.	

Exercise 3

Calc. : 🗡

Exercise 4	Calc. : 🗡
For each of the situations A to E described below, state whether the model involves:	10 marks
1. (a) Growth(b) Decay(c) Neither	
and whether the model is:	
 2. (a) Linear (b) Exponential (c) Quadratic (d) Sinusoidal 	
A: A population of 100 mice increases by 20% each week under favourable conditions	
B: A tree which is 1.2 m tall when planted grows 30 cm each month during the growing season	
C: The height, h , of a stone, t seconds after being dropped from the top of a tower is modelled by the function	
$h(t) = 130 - 5t^2$	
D: The number of daylight hours in Blankenloch varies periodically each year between 16 hrs 12 mins and 8 hrs 13 mins	
E: The temperature, T , of a liquid, t minutes after being placed in a refrigerator, is given by the function	
$T(t) = 98 \cdot 2^{-\frac{t}{50}}$	

