Exercise 1

Let f and g be two functions defined by:

$$f(x) = a + e^{-x+1}$$
 $g(x) = \frac{b \cdot x + 2}{x-1}$

where a and b are real numbers.

Find the values of a and b such that f and g have the following properties: 5 marks • f and g have the same limit in $+\infty$.

• The graphs of functions f and g intercept in a point with abscissa 2.

Exercise 2

((1)	(n)		(2)	
Consider vectors $\overrightarrow{a} =$	$1, \vec{b} =$	1	and $\overrightarrow{c} =$	-1	, where n is a real number.
	(1)	(-3))	(-1)	
Drove that whatever the	a ralua	of m	the rolum	o of	the nervellelenined determined

Prove that whatever the value of n, the volume of the parallelepiped determined by these vectors 5 marksis always the same.

Exercise 3

Solve the equation:

$\log_2(x) + \log_2(x - 1) = 1$

Exercise 4		Calc. : 🗡
Consider function f defined by $f(x) = x^2 \cdot \cos(x)$	S <i>x</i> .	
Of the four functions below, which one is a primitive function of f ? Explain you answer.		5 marks
2		
$F(x) = \frac{x^3}{3} \cdot \sin x$	$H(x) = 2x \cdot \cos x + (x^2 - 2) \cdot \sin x$	
$G(x) = -2x \cdot \sin x$	$K(x) = 2x \cdot \cos x - x^2 \cdot \sin x$	

Exercise 5		Calc. : 🗡
Let a and b be two non-zero real numbers and j	f be the function defined over \mathbb{R} by:	
f(x) =	$a \cdot e^{b \cdot x}$	
Here are two possible shapes for the curve of th	is function.	
In each case, give the possible values for a and b .		5 marks
Case 1	Case 2	

Exercise 6	Calc. : 🗡
Find a complex number z that is a cube root of $-8i$ and a fourth root of $-8 - 8i\sqrt{3}$.	5 marks

Calc. : X

Calc. : X 5 marks

Calc. : X

Exercise 7	Calc. : 🗡
The Corbett Nation Park reserve in India is a natural reserve where we can see tigers.	
1. This reserve is home to 8 tigers, five of which are marked.	
We capture three tigers, what is the probability that two of them be marked?	2 marks
Give the result as an irreducible fraction.	
2. A group of 8 tourists arrives on the site for a safari.	
Four of these tourists must get into the first car, that has four different places. How many different ways can they fit in the car?	2 marks
3. We know that 40% of visitors to Corbett Nation Park are European.	
Among Europeans, 10% see a tiger.	
We also know that 20% of visitors to this reserve see a tiger.	
We come across a non-European visitor at random. Calculate the probability that he saw a tiger.	2 marks
4. Every day, the probability that a tourist sees a tiger is of 0.2.	
(a) Calculate the probability that a tourist sees a tiger for the first time on the third day of his visit.	2 marks
(b) We note $P(X = n) = p_n$ the probability that a tourist sees a tiger for the first time on the <i>n</i> -th day of his visit. Show that the sequence (p) is a geometric sequence of which we will specify the first term and reason.	2 marks
(c) Show that $P(X \le n) = 1 - 0, 8^n$. Interpret this result in this context.	3 marks

 Exercise 8
 Calc. : \checkmark

 Let f and g be two functions defined by

$f(x) = -\frac{1}{2} \left(e^{2x} + e^{-2x} \right)$ $g(x) = x^n \cdot \ln(x)$	
where n is a positive integer.	1
Prove that the graphs of these two functions never intersect, whatever the value of n .	$7 \mathrm{marks}$