Exercise 1	Calc. : 🗶
Given the function f, where $f(x) = \ln(3x - 2)$, determine the equation of the tangent to the	4 marks
graph of f when $x = 1$.	

Exercise 2	Calc. : X
Determine the complex solutions to the equation: $z^2 = 3i$. Give your answers on the form	5 marks
$z = re^{i\theta}$ where $\theta \in]-\pi, +\pi].$	

Exercise 3	Calc.: 🗶
Given the function $f(x) = \frac{2x-1}{x-1}$. Let f^{-1} be the inverse function of f .	
Solve the equation $f^{-1}(x) = 2$.	3 marks

Exercise 4	Calc.: X
A strictly increasing arithmetic sequence (a_n) and a geometric sequence (b_n) have the same first	
term, where $a_1 = b_1 = 2$.	
Additionally, both (a_n) and (b_n) have the same third term. That is $a_3 = b_3$.	
The sum of the first three terms of the arithmetic sequence is 4 greater than the sum of the first	
three terms of the geometric sequence.	
Determine the formula for the <i>n</i> th term of both (a_n) and (b_n) .	7 marks

Exercise 5 A continuous random variable	V has a density funct	tion given by a formula.	Calc. : X
A continuous random variable	e A has a density func	non given by a formula:	
	$f(x) = \begin{cases} 0 \\ a \cdot e^{-ax} \end{cases}$	$ if x < 0 \\ if x \ge 0 $	
We know that $P(X < 1) = \frac{1}{2}$.			E manks
Show that $a = \ln 2$.			5 marks

Exercise 6 Calc.: X

Given is the graph of the second derivative f'' of a function (see figure below).

Decide which of the following statements are true and which are false.

Justify your answer.


1. The graph of f is concave for -0, 5 < x < 2.

 $2~{\rm marks}$

2. The graph of f has an inflection point at x=0.

- 2 marks
- 3. If f'(0) = 0, then the graph of f has an inflection point with a horizontal tangent at x = 0.

A drone manufacturer tests new types of drones at a local athletics field.

Drone A moves along the path given by the equation:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 13 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ 12 \end{pmatrix}, \quad t \ge 0$$

The time t is in seconds and distance is measured in meters.

1. **Find** the position of drone A after 6 seconds.

- 2 marks
- 2. **Determine** how long it will take the drone A to reach the point (25, 33, 60).
- 2 marks
- 3. Calculate the speed of the drone A. Give your answer in a simplest surd form.
- 2 marks

4. There is an observer watching drone A from the point (13,53,0).

Calculate the shortest distance between the drone A and the observer, and the time when it occurs.

3 marks

Drone B takes off from the point (9, 11, 0) and moves at 7 m/s in the direction $\begin{pmatrix} 1 \\ 1.5 \\ 3 \end{pmatrix}$.

5. **Show** that the equation describing the position of the drone B is:

2 marks

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 9 \\ 11 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}, \quad t \ge 0$$

6. Find the point at which the paths of the drones A and B intersect.

2 marks

- 7. **Decide** whether the drones will collide at this point.
 - T

 $2~\mathrm{marks}$

Justify your answer.

Exercise 8 Calc.: X

Two players, A and B alternately and independently flip a fair coin. The first player to get a head wins. Assume player A flips first.

5 marks

- 1. Write down the probability that A wins in a first throw.
- 2. Calculate the probability that A wins in a third throw.
- 3. **Determine** the probability that A obtains the first head.