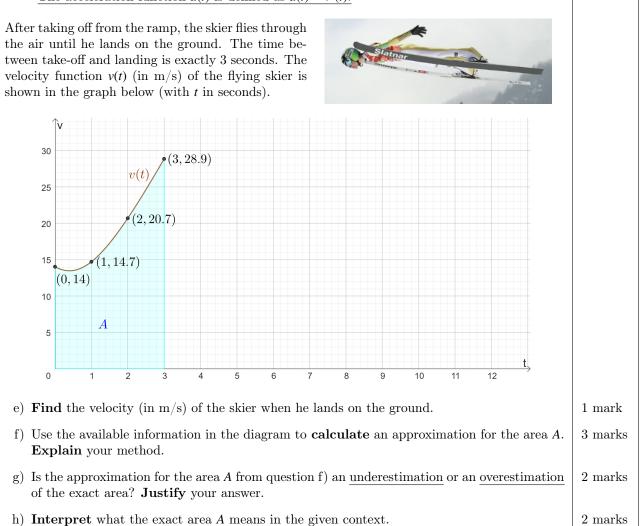


$\underline{Part 2}$

Use the following definitions for Parts 2 and 3:

- The position of an object is determined by the function s(t), where t is the time in seconds and s(t) is expressed in meters.
- The velocity function v(t) is defined as v(t) = s'(t).
- The acceleration function a(t) is defined as a(t) = v'(t).



$\frac{Part \ 3}{As the skier lands on the landing slope, he slows down until he comes to a complete stop. The velocity of the skier on the landing slope can be modelled by the function:$	
$v(t) = -3.4 \cdot t + 28.9$	1
where t is in seconds and $t = 0$ corresponds to the moment when the skis touch the ground.	l
i) How long does it take for the skier to slow down to a complete stop? Justify your answer.	2 marks
j) Investigate whether a landing slope of 120 m is long enough for the skier.	2 marks

Exercise 2		Calc. : 🗸
The Island Part 1 (Parts 1 and 2 of this question can be solved independently	-)	
The table below gives the measured population on an island.	<u>/.)</u>	
Beginning of the year	2015 2020	
Population	5 500 7 250	
a) Use a <u>linear model</u> to predict the population at the beginning	g of 2023.	2 marks
b) Peter uses an exponential model $p(t) = k \cdot a^t$ to model the po- corresponds to the beginning of 2015 and a and k are parameters.	- /	
Find the parameters a and k of the model $p(t)$.		3 marks
c) Show that the exponential model $f(t) = 5 500 \cdot e^{0.05525 \cdot t}$ adequ	ately fits the given data.	2 marks
For questions d), e) and f), you can use the exponential model		
$f(t) = 5 \ 500 \cdot \mathrm{e}^{0.05525 \cdot t}$		
In this model $t = 0$ corresponds to the beginning of 2015.		
d) Determine the annual growth rate of the exponential model		2 marks
e) Calculate $f'(5)$ and interpret what the result means in the	given context.	2 marks
f) Use the exponential model to find in which year the population	on would reach 10 000 people.	3 marks
At the beginning of 2022, the island was hit by an earthquake. Alt event, 6 000 people decided to leave the island immediately. After the island population was the same as before.	- ·	
g) Investigate in which year the island population will be the sa of 2015.	ame as it was at the beginning	3 marks

Part 2

Date	1 st of Jan	1^{st} of Feb	1^{st} of Mar	1^{st} of Apr	1^{st} of May	1^{st} of Jun
aylength	7.67	8.55	10	11.2	12.33	13
in hours)						
Date	1 st of Jul	1 st of Aug	1 st of Sop	1 st of Oct	1 st of Nov	1 st of Dec
		0	1 st of Sep			
aylength	13.05	12.67	11.6	10.35	8.95	7.83
ı hours)						

- h) **Explain** why the day length h(x) can be modelled with a periodic model and **give** the period 2 marks of this model.
- i) **Estimate** the amplitude of this periodic model.
- j) Hence, **investigate** for which values of the parameters a, b, c, and d the periodic model h(x) 4 marks fits the data adequately.

2 marks