

Teachers : S. ANGELOZI, S. KWASNY, A. C. LENTI, H. PÁSZTOR, M. PÉREZ PÉREZ, S. F. SOLANDER, R. SOUISSI, L. WURZER.

MATHEMATICS 4 PERIODS

PART A

DATE: 17 June 2024

Name :		
Class :		
Score :	/ 35	

DURATION OF TEST:

45 minutes: 13h00 - 13h45

AUTHORIZED MATÉRIAL:

NON-CALCULATOR

Pencil

Ruler

SPECIAL REMARKS:

- The subject includes 4 compulsory exercises.
- The answers must be accompanied by the explanations necessary for their elaboration.
- Full points cannot be awarded for a correct answer in the absence of the reasoning and explanations that lead to this answer.

Stay calm and focused. Good job and good luck.

Exercice A1	Marks
In a certain country the growth of a certain rabbit population (per week) can be	
modelled with the following function:	
$f(x) = 100 \cdot 2^x$	
with $f(x)$ describing the number of rabbits after x weeks and $x=0$ being the time	
at the beginning of the observation of the rabbit population.	
1) Give the number of rabbits, that have been in the country at the beginning of	1 p
the observation.	
2) Calculate how many rabbits will live in the country after 1 week and after 3	4 p
weeks and compare the values.	
3) Sketch the graph of the function $f(x)$ for $x \in [0,5]$. Use the sheet of graph	2 p
paper you received at the beginning of the exam.	

2 p
2 p
3 p

Exercice A3	Marks
The figure shows a pyramid s	
ABCDS with a square base.	
The base is $a = 6 cm$ and the	
neight of the pyramid is	
a=4 cm.	
) Given that the formula for the volume of a pyramid is	2 p
	_ P
$V = \frac{Base\ area \cdot Hight}{3}$	
calculate the volume of this pyramid.	
2) Calculate the height of triangle BCS.	2 p
3) Calculate the area of triangle BCS.	2 p
e) Calculate the surface area of this pyramid.	3 p

Exercice A4	Marks
Determine what each angle in degrees is equivalent to in radians:	3 p
i. 45° =rad ii. 150° =rad iii. 300° =rad	
2) Determine what each angle in radians is equivalent to in degrees:	2 p
iv. $\frac{1}{3} \cdot \pi \text{ rad} = \underline{\qquad}^{\circ}$ v. $\frac{5}{4} \cdot \pi \text{ rad} = \underline{\qquad}^{\circ}$	
3) Insert those 5 angles listed above on the unit circle	2 p
4) Given is $\cos(60^{\circ}) = \frac{1}{2}$.	5 p
Based on this information find all the values of α (0 < α < 360°) for which	
$\cos(\alpha) = -\frac{1}{2}.$	
Enter the answers in radians and plot it on the above unit circle.	

