Professors:P. ALBANO, S. CHOUDHARY, B. DUROYON-MARCHAND, C. FOLMER JENSEN, S. KWASNY, J. LEEB, H. PÁSZTOR, L. SÁNCHEZ BLÁZQUEZ, H. SIENIAWSKA, S. F. SOLANDER, R. SOUISSI

MATHEMATICS 6 PERIODS

PART A

DATE: June 14, 2023
Last name, First name: \qquad

Class: S5MA6ENA

Marks: \qquad / 19

DURATION OF THE TEST:

45 minutes: 8:30 am -9:15 am

AUTHORIZED EQUIPMENT:

Exam without technological support
Pencil for Drawings/ graphics

Ruler

SPECIAL NOTES:

- The subject consists of 3 mandatory exercises.
- The answers must be accompanied by the explanations necessary for their preparation.
- All points cannot be attributed to a correct answer in the absence of the reasoning and explanations that make it possible to arrive at this answer.
- The candidate must answer on the subject: empty spaces are left in each exercise to do this.

Stay calm and focused.
Good job and good success.

Exercise A1

1. If $a=\log 8+\log 5-2 \log \sqrt{4} \quad b=3^{\frac{1}{2} \log _{3}(2)}$ and $c=\log _{3}(27)$, justify that $a<b<c$. Present your reasoning.
2) Solve in the real numbers the following equations:

3 points
a) $\left(3^{x-1}\right)^{2}=3^{x-5}$
b) $4^{x-2}=8^{x}$

Exercise A2	Points
1) Solve the equation $\cos (x)=\frac{-1}{2} \quad$, for $x \in R$.	2 points
2) Solve the equation $\sin \left(x-\frac{\pi}{5}\right)=\frac{-\sqrt{2}}{2}$, for $x \in[0 ; 2 \pi]$.	2 points
3) Solve the equation $2 \sin ^{2} x+\sin x-1=0$ for $x \in[0 ; 2 \pi]$.	3 points

Exercise A3 (Page 2/2)

Points

2) In the following questions, the answer is given by giving the results as a simplified fraction.
a) Determine the probability of event M and the probability of

1 point event C.
b) Describe the $M \cap A$ event with one sentence and calculate
1.5 points the probability of this event.
c) Calculate the probability that the randomly selected person will 1 point reside in the «Mouette » house given that he has been assessed at level A.
d) Calculate the probability $P\left(\mathbf{C} / M^{\prime}\right)$. Interpret this probability 1.5 points in the context of the exercise.

