Professors: P. ALBANO, S. CHOUDHARY,
B. DUROYON-MARCHAND, C. FOLMER JENSEN, S. KWASNY, J. LEEB, H. PÁSZTOR, L. SÁNCHEZ BLÁZQUEZ, H. SIENIAWSKA, S. F. SOLANDER, R. SOUISSI.

MATHEMATICS 6 PERIODS
 PART B

dAte: June 14, 2023
Last name, First name: \qquad

Class: S5MA6ENA

Marks \qquad / 41

DURATION OF THE TEST:

1h30 minutes (90 minutes) : 10h00-11h30

AUTHORIZED EQUIPMENT:

Exam with technological tool: Casio Graph 90+E,
Numworks or TI-83 Premium CE Python calculator in exam mode.
Pencil for graphics
Ruler

SPECIAL REMARKS:

- The subject consists of 6 mandatory exercises.
- The answers must be accompanied by the explanations with relevant steps.
- All the points cannot be attributed to a correct answer in the absence of the reasoning and explanations that make it possible to arrive at this answer.
- The candidate must answer on the subject: empty spaces are left in each exercise to do this.
Exercise B1
The side view of the ramp represented by the image below is of a
parallelogram shape. The vertical sides are 80 cm , their distance
is 115 cm . The length of the other two sides is 125 cm . (We use
the notation in the figure.)

1) The angle φ is the angle formed by the horizontal and the lower
side of the parallelogram. Prove with a calculation that $\varphi=23^{\circ}$
(rounded to the nearest integer).
2) Calculate the length of the diagonal of the parallelogram.
3) A reed windbreak is installed on the ramp. Calculate the area
of the reed breakthrough covering the parallelogram-shaped part.
Discuss whether the area of the reed windbreak is less than $1 \mathrm{~m}{ }^{2}$.

Exercise B2	Scale
40% of a dentist's patients are men. The agenda of this dentist	
shows that 20% of men and 10% of women who make an	
appointment do not come to this appointment.	
A person makes an appointment.	
1) Determine the probability of:	2 points
(a) that person is a woman present at the appointment.	2 points
(b) that person comes to the appointment.	2 points
(c) that person is a man given that this person does not come to	
the appointment.	
53% patients of another dental practice are under 18 years old,	
71% of patients wear glasses of which 47% are 18 years of age	
or older.	
The following events are considered:	
A: " The patient is 18 years of age or older"	
L: " The patient wears glasses"	
2) Determine whether events A and L are independent. Justify	2 points
your answer.	

Exercise B3

On the social media Twitter, we study the likes of three tweets during a period of time.
At the beginning of the study, the first tweet has 210 likes, and then, the number of its likes grows by 25% per hour.

1) Explain why the increase is exponential and why it can be 1 point modelled by the formula:

$$
T_{1}(t)=210(1.25)^{t}
$$

Where t indicates number of hours after the starting time.
2) Compute the number of likes that the tweet has after 24 hours.
3) On the millimeter paper provided, draw the graph of the function T_{1} for the first twenty hours after the tweet has been written.
4) According to the model, compute the number of hours it takes for the tweet to reach 10000 likes.

The number of likes for a second tweet, t hours after the starting time. is given by the formula:

$$
T_{2}(t)=1240(1.025)^{t}
$$

5) Determine when the first tweet overtakes the second tweet, in number of likes.

A third tweet has at the same starting time 421 likes, and its number of likes increases by 8\% per hour.
6) Find the expression of the number of likes for this third tweet as 1.5 a function of t, the number of hours after the starting time.

Exercise B4	Points
Let k be a real number. We consider the vectors: $\vec{u}=\binom{1}{2 k-3}$ and $\vec{v}=\binom{k-1}{3}$. 1) Find the parameter k, so the vectors \vec{u} and \vec{v} are colinear. 2) Find the parameter k, so the vectors \vec{u} and \vec{v} are orthogonal. From now on, we take $k=5$. 3) Find the measure of the angle between the vectors \vec{u} and \vec{v}. 4) Express vector $\vec{w}=(-10,5)$ as a linear combination of vectors \vec{u} and \vec{v}. 5) Find the coordinates of the vertices of the parallelogram $A B C D$, knowing $A=(-2,1), \overrightarrow{A B}=\vec{u}$ and $\overrightarrow{A D}=\vec{w}$.	points 1.5 points 2.5 points 2.5 points

Exercise B5

Consider a triangle $A B C$ whose points have the coordinates: $A(0,0)$, $B(-2,4)$ and $C(4,5)$.

1) Calculate the coordinates of the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}$.
2) Show that the angle at the vertex B of the triangle $A B C$ is $72.9^{\circ} 1$ point rounded to the nearest tenth.
3) Calculate the area of the triangle $A B C$.

Exercise B6	Points
1) Solve the equation $\log _{5} x+\log _{5} 3=\log _{5} 6$.	1.5 points
2) Solve the equation $\log _{2} x+\log _{2}(x-1)=2 \log _{2} x$.	2.5 points

END OF THE EXAMINATION

