

PART EXAMINATIONS (PRE-BACCALAUREATE) 2023-2024

MATHEMATICS 3 PERIODS PART B

DATE: January, Monday the 29th, 2024

TIME ALLOWED FOR THE EXAM:

2 hours (120 minutes)

AUTHORISED MATERIAL:

- Examination with technological tool: Approved calculator
- Pencil for the graphs
- Formula booklet

PARTICULAR REMARKS:

• Answers must be supported by explanations.

• Full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.

• When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.

NUMBER OF EXAM DOCUMENTS: 2								
EXAM DOCUMENTS:								
EXAM PAPER YES 🛛 NO 🗌								
ANSWER BOOKLET	YES 🗌 NO 🛛							
FORMULA BOOKLET								

NUMBER OF PAGES OF THE EXAM PAPER: 8

REMINDER: NO ANSWERS TO BE WRITTEN ON THE EXAM PAPER

NAME OF TEACHERS: S. ANGELOZI, Y. BARSAMIAN, K. HANSEN, A. HARSÁNYI, M. PÉREZ PÉREZ, C. PETRUZ, O. PICAUD, J. SZUTY, L. WURZER.

NAME OF PUPIL:

PART B							
QUESTION B1 P	age 1/3	Marks					
In this question, parts 1, 2 and 3 are independent.							
 Part 1. Sports watches are wristwatches that can be used during sporting activities. A lot of people use those watches. The so-called <i>Sporty</i> sports watch is particularly popular. The probability that a random person with a sports watch has the watch <i>Sporty</i> is 60 %. We are looking at a sample of 500 people with sports watches. The random variable X gives the number of people in this sample that have the sports watch <i>Sporty</i>. 	rate 8 22 mm 55 km						
a) Explain why X can be modelled by a binomial law and	give its	2 marks					
parameters.							
b) Calculate the probability that at least 300 people in this sample sports watch <i>Sporty</i> . Round to 2 decimal places.	have the	2 marks					
c) Determine the expected number of people in this sample with the	ne sports	2 marks					
 watch Sporty. d) Calculate the standard deviation of X. Round to 3 decimal Interpret it in the given context. 	l places.	2 marks					

PART B							
QUESTION B1 Page 2/3							
Part 2.							
The sports watch <i>Sporty</i> can give the effort during a run very accurately if the person gives his or her weight.							
A woman with a weight of 60 kg is running uphill for 30 minutes. Therefore, her effort level is not steady. Her running power can be modelled by the following function:							
$P(t) = -0.05t^2 + 3t + 66$, with $0 \le t \le 30$							
where $m{t}$ is in minutes and $m{P}(m{t})$ in kJ/min (kilojoules per minute).							
e) Calculate at which power the woman is running when she starts running, and 15 minutes after she started.							
f) Draw the graph of the function <i>P</i> in the given definition set.		3 marks					
g) Determine at what time the woman's running power is 106 kJ/	min.	3 marks					

PART B							
QUESTION B1 Page 3/3							
Part 3.							
for a delivery at a shop called "RunAway".							
We know that 80% of the time the <i>Sporty</i> arrives on time (in a few	days), 15%						
of the time it arrives late (it takes some weeks to arrive) and the rest of the times it doesn't arrive at all.							
We also know that when the <i>Sporty</i> arrives on time, the probability	that people						
like the shop "RunAway" is 0.9; when it arrives late, the probability that people like it is 0.3; and if it doesn't arrive at all the probability that people like the shop is 0.1.							
We randomly select a user who ordered a <i>Sporty</i> watch online and asked for delivery in this shop.							
h) Sketch a tree diagram of the situation above.		3 marks					
i) Compute the probability that this user likes the shop "RunAwa	y".	2 marks					
j) If we know that this person liked the shop, give the probabi Sporty that was ordered arrived on time.	lity that the	3 marks					

PART B							
QUESTION B2	Page 1/3	Marks					
In this question, parts 1 and 2 are independent.							
Devit 4							
Part 1. $$							
A musician plays a guitar and wishes to model its shape. The main wood box							
can be modeled by the following equation:							
$f(x) = -0.13 x^{2} + 1.4 x^{2} - 4.9 x^{2} + 6 x$							
The following picture shows the curve of f (in red, plain line), toget	her with the						
symmetric of this curve, with respect to the x-axis (in blue, dash	ned line). In						
this equation, \boldsymbol{x} is in decimetres, and $\boldsymbol{f}(\boldsymbol{x})$ is also in decimetres.	The surface						
between those two curves forms the wood box of this guitar.							
	width						
length							
As can be seen on the graph, the function f is in fact defined from 0 to a value							
<i>w</i> , which is the other solution of the equation $f(x) = 0$.							

PART B								
	QUESTION B2 Page 2/3							
a) Determine the value of <i>w</i> , rounding to 3 decimal places. Give the length								
	of the wood box, in centimetres.							
b) Determine the maximum value of f , rounding to 3 decimal places. Give								
	the width of the wood box, in centimetres.							
c)	The function f has three stationary points. In question b) we	have found	4 marks					
one of them. Give the coordinates of the two other stationary points,								
	rounded to two decimal places.							
Before a big concert, our musician wants to paint the back of the wood box in								
black. We hence want to know what is the area of this surface.								
d) Determine an approximate value of the following integral, rounded to 3								
	decimal places:							
	$\int_{0}^{5.3} f(\mathbf{x}) d\mathbf{x}$							
Give the area that has to be painted, in square decimetres.								

PART B											
QUESTION B2 Page 3/3							ge 3/3	Marks			
Part 2.											
Our musician ope	Our musician opens a webpage for his band, and is interested in the number										
of followers across time ($x = 0$ when the webpage is created). The table below											
shows the numbe	r of fo	llower	s for tl	he first	t 20 w	eeks:					
x = Time	2	4	5	8	10	11	12	13	16	18	
(weeks)											
y = Number of	275	240	180	300	380	350	250	350	440	400	
followers											
e) Draw a scatte	er dia	gram t	o repr	esent	the da	ita fror	n the f	table.			3 marks
f) Compute the	e linea	ar cori	relatio	n coei	fficient	t. Dete	ermin	e if a	linear	model	3 marks
would be ap	propri	ate fo	r his o	data. I	Discu	ss ho	w we	could	impro	ve the	
linear model by combining it with another one.											
g) Determine an equation in the form $y = a \cdot x + b$ of the linear regression of							3 marks				
y on x using this data. Round a and b to one decimal place.											
Draw the regression line on the same diagram as e).											
In h) and i), use the linear model $f(x) = 20 \cdot x + 190$.											
h) Compute when the number of followers would be over 800.							3 marks				
i) Explain why the model is not appropriate over many weeks.							2 marks				

END OF THE EXAMINATION