MATHEMATICS 3 PERIODS PART B

DATE: January, Monday the $29^{\text {th }}, 2024$

TIME ALLOWED FOR THE EXAM:

2 hours (120 minutes)

AUTHORISED MATERIAL:

- Examination with technological tool: Approved calculator
- Pencil for the graphs
- Formula booklet

PARTICULAR REMARKS:

- Answers must be supported by explanations.
- Full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.

NUMBER OF EXAM DOCUMENTS: 2	
EXAM DOCUMENTS:	
EXAM PAPER	YES \boxtimes NO \square
ANSWER BOOKLET	YES \square NO \boxtimes
FORMULA BOOKLET	YES \boxtimes NO \square

NUMBER OF PAGES OF THE EXAM PAPER: 8

REMINDER: NO ANSWERS TO BE WRITTEN ON THE EXAM PAPER
NAME OF TEACHERS: S. ANGELOZI, Y. BARSAMIAN, K. HANSEN,
A. HARSÁNYI,
M. PÉREZ PÉREZ,
C. PETRUZ,
O. PICAUD,
J. SZUTY, L. WURZER.

NAME OF PUPIL:

PART B		
QUESTION B1	Page 2/3	Marks
Part 2. The sports watch Sporty can give the effort during a run very accurately if the person gives his or her weight. A woman with a weight of 60 kg is running uphill for 30 minutes. Therefore, her effort level is not steady. Her running power can be modelled by the following function:		
$\qquad P(t)=-0.05 t^{2}+3 t+66, \quad$ with $0 \leq t \leq 30$	3 marks	
where t is in minutes and $P(t)$ in $\mathrm{kJ} /$ min (kilojoules per minute).	3 marks	
e) Calculate at which power the woman is running when she starts running,		
and 15 minutes after she started.	3 marks	

PRE-BACCALAUREATE 2024: MATHEMATICS 3 PERIODS

PART B											
QUESTION B2									Page 3/3		Marks
Part 2. Our musician opens a webpage for his band, and is interested in the number of followers across time ($x=0$ when the webpage is created). The table below shows the number of followers for the first 20 weeks:											3 marks
$x=$ Time (weeks)	2	4	5	8	10	11	12	13	16	18	
$y=\text { Number of }$ followers		240					250	350		400	
e) Draw a scatter diagram to represent the data from the table.											
f) Compute the linear correlation coefficient. Determine if a linear model would be appropriate for his data. Discuss how we could improve the linear model by combining it with another one.											3 marks
g) Determine an equation in the form $y=a \cdot x+b$ of the linear regression of y on x using this data. Round a and b to one decimal place. Draw the regression line on the same diagram as e).											3 marks
In h) and i , use the linear model $f(x)=20 \cdot x+190$.											
h) Compute when the number of followers would be over 800.											3 marks
i) Explain why the model is not appropriate over many weeks.											2 marks

