MATHEMATICS 3 PERIODS PART A

DATE : $10^{\text {th }}$ June 2024, afternoon

DURATION OF THE EXAMINATION:

2 hours (120 minutes)
AUTHORISED MATERIAL:
Examination without technological tool
Pencil for the graphs
Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.

PART A	Page 1/4	Marks

1) The diagram below shows the graph of a function f and the graph of its derivative f^{\prime}.

Determine an equation of the tangent to the graph of f at the point where $x=1$.
2) Consider the function f defined by

$$
f(x)=-2 x^{2} \cdot(2-x)
$$

The diagram below shows the graph of f.

Write an integral that gives the area of the shaded region.
(You do not need to calculate this integral, only give an appropriate expression).

PART A	Page 2/4	Marks

3) The velocity of a moving object is given by a function f.

A primitive of f is given by the function F defined by

$$
F(t)=\frac{2}{3} t^{3}+3 t
$$

where t is the time expressed in seconds and $F(t)$ is expressed in metres.
a) Determine an expression for $f(t)$, the velocity in m / s.

2 marks
b) The displacement, in metres, of the moving object between $t=a$ and $t=b$ is given by

$$
\int_{a}^{b} f(t) d t
$$

Calculate the displacement of the moving object between $t=0$ and $t=3$.
4) The height of water in a harbour is modelled by the function h defined by

$$
h(t)=2 \sin \left(\frac{\pi}{6} t\right)+3
$$

where t is the time in hours and $h(t)$ is the height in metres.
a) Determine the maximum height of the water in the harbour.
b) Determine two different values of the time t, when the water is at its highest level.
c) On graph paper, draw the graph of the function h for t between 0 and 16 hours.
Use 1 cm for 1 hour on the x-axis and 1 cm for 1 metre on the y-axis.

PART A			Page 3/4	Marks
5) a) The number of plants of a certain species can be modelled by the function A, given by $A(t)=a \cdot b^{t}$ where a is the initial number of plants and t is the time in years. It is given that $\frac{A(1)}{A(0)}=0.98$. Determine b and explain its meaning in this context. b) Now consider the population of a second species, which decreases at a constant rate of 10% per year. The initial number of plants of this species is 500 . Determine which one of the following formulae describes the number $B(t)$ of plants of this species after t years.				2 marks
				1 mark
	Option 1: $B(t)=500 \cdot(-0.10)^{t}$ Option 3: $B(t)=500 \cdot(0.90)^{t}$	Option 2: $B(t)=500$ Option 4: $B(t)=500$	$10)^{t}$ $10 \cdot t$	
c) The number of plants of a third species can be modelled by the function C defined by $C(t)=400 \cdot(0.85)^{t}$, where t is the time in years. Using this model, describe how the number of plants evolve over many years.				
6) A multiple-choice test consists of 4 questions. Each question has three possible answers, with only one answer being correct. One student answers each question at random. a) Calculate the probability that the student will answer all 4 questions correctly. b) Calculate the probability that the student will get at least one correct answer. c) Determine the expected value of the number of correct answers obtained by the student.				
				1 mark
				2 marks
				2 marks

