MATHEMATICS 3 PERIODS PART B

DATE: $10^{\text {th }}$ June 2024, morning

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

Examination with technological tool:
authorized calculator
Pencil for the graphs
Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Use a different page for each question.
- Answers must be supported by explanations.
- Answers must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is shown that an appropriate method and/or a correct approach has been used.

EUROPEAN BACCALAUREATE 2024: MATHEMATICS 3 PERIODS

EUROPEAN BACCALAUREATE 2024: MATHEMATICS 3 PERIODS

EUROPEAN BACCALAUREATE 2024: MATHEMATICS 3 PERIODS

PART B	
QUESTION B1 ${ }^{\text {P1 }}$ (${ }^{\text {a }}$	Marks
Part 3 Adult salmon live in the open sea but return to the freshwater streams and rivers to lay their eggs. This is known as reproductive migration. Scientists started recording the migration in 2010. The population of migrating salmon can be modelled by the function P defined by $P(t)=a \cdot \sin (0.5 t)+d,$ where t is the time in years after 2010. In 2013 they recorded 48000 migrating salmon, which was the highest population to migrate. In 2019 they recorded 17000 salmon, which was the lowest population to migrate.	
j) Show that the amplitude a of the function P is 15500 and the vertical shift d is 32500 . k) Determine the expected population of migrating salmon in 2024. I) Salmon fishing is suspended when the population drops below 21000. Determine after how many years this is expected to happen for the first time since the recording started.	2 marks 2 marks 2 marks

EUROPEAN BACCALAUREATE 2024: MATHEMATICS 3 PERIODS

PART B								
QUESTION B2	Page 1/3							
Part 1								
The following table shows the revenue y, in millions of euros, of a basketball								
league x years after 2006.								
Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 x 0 1 2 3 4 5 6 7 8 9 y 34.1 43.1 49.5 59.3 59.4 60.9 76.9 86.6 90.8 97.8								

a) Represent the above data on a scatter diagram.
b) Using the data from the table, determine an equation of the regression

2 marks
3 marks line of y on x. Give your answer to 3 decimal places. Draw the regression line on the same diagram.

In the following use the model $y=6.95 \cdot x+34.56$.
c) According to the model, estimate the expected revenue for 2016.
d) A revenue of 114 million euros was generated in 2017 and 120 million euros in 2018.

Explain whether the above linear regression model seems appropriate after 2015.

PART B		
QUESTION B2		Page 3/3
Part 3		
It is assumed that with each free throw Bob has an 87.7 \% probability of		
scoring.		
i)Bob is going to take 10 free throws. Calculate the probability that Bob will score more than 8 times. j)Determine the number of free throws required for Bob to score more than 12 times with a probability of over 95 \%.	3 marks	

