MATHEMATICS 3 PERIODS PART A

RESERVE Questions

DATE : 18 June 2024, afternoon

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

Examination without technological tool
Pencil for the graphs
Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- Answers must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.

PART A	Page 1/6	Marks

1) Consider the function f defined by

$$
f(x)=2 x^{3}-9 x^{2}+45 .
$$

Determine the coordinates of the extrema of the function f and specify their nature.
2) The diagram below shows the graph of a function g.

Specify for each of the following expressions, whether it represents the hatched area. Justify your answer.
a) $\int_{a}^{c} g(x) d x$
b) $\int_{a}^{b} g(x) d x+\int_{b}^{c} g(x) d x$
c) $\left|\int_{a}^{c} g(x) d x\right|$
d) $-\int_{a}^{b} g(x) d x+\int_{b}^{c} g(x) d x$.

PART A	Page 2/6	Marks

3) A car is travelling along a horizontal road and the distance from the origin is observed over a period of 8 seconds, starting at $t=4$ seconds.

The distance is given by the function d defined by $d(t)=\frac{1}{4} t^{3}-2 t^{2}+5 t+3$ with $t \in[4,12]$
where t is the time expressed in seconds, and $d(t)$ is expressed in metres.
a) Show that at the start of the observation, the car is 7 metres from

1 mark

2 marks

2 marks
c) Determine the instantaneous velocity of the car at $t=10$ seconds.
4) The diagram below shows the graph of a sine function h with a period length of 2π.

Determine $h(x)$.

5 marks

	PART A Page 3/6	Marks
	Between 1st January 2000 and 1st January 2023, a group of scientists studied the surface area of a lake in a mountainous region of Europe. They created a model which suggests that the surface area of the lake decreases by 10% each year. The initial surface area of the lake is $5 \mathrm{~km}^{2}$. a) Explain why the surface area of the lake can be modelled by a function s defined by $s(t)=5 \cdot 0.9^{t}$, where t is the number of years since year 2000 and $s(t)$ is expressed in km^{2}. b) Using this model, determine the surface area of the lake in 2002. c) Assume the model will remain valid over time. Describe the evolution of the surface area of the lake over time. Peter applies for his first job. He sends his CV letter to 2 different companies. The probability that exactly one company will reply to him is 0.45 . The probability that no company will reply to him is 0.3 . a) Draw a Venn diagram to illustrate the above information. b) Determine the probability that both companies will reply to Peter. Give the answer as a percentage.	2 marks 1 mark 2 marks 2 marks 3 marks

	PART A Page 5/6	Marks
9) A brewery has a machine that fills bottles with soft drinks. The machine is set up so that the quantity of soft drink filled in a bottle is normally distributed with a mean of 505 ml and a standard deviation of 2 ml . a) Determine the probability that a randomly chosen bottle contains at least 505 ml of soft drink. b) Determine the probability that a randomly chosen bottle contains between 501 ml and 509 ml of soft drink. Another machine fills bottles with juice. It is assumed that the quantity of juice contained in a bottle follows a normal distribution with mean $\mu \mathrm{ml}$ and standard deviation $\sigma \mathrm{ml}$. It is given that $P(X \leq 590)=0.1587$. The graph of this normal distribution is given below. c) Give the value of the mean of this normal distribution and justify your answer. d) Determine the probability that a randomly chosen bottle contains more than 590 ml of juice. Give the answer to the nearest tenth.		1 mark

PART A							Page 6/6	Marks
10) In a population of fish, approximatively 42% are female. A test is conducted because it is possible that, in fact, this proportion is less. a) State the null hypothesis H_{0} and the alternative hypothesis H_{1}. b) Let X be the random variable that gives the number of female fish in a sample of 20 fish. The table below shows values of $P(X \leq k)$ for $k=3,4,5,6,7,8$, for a probability of 42% that a given fish is a female.								2 marks
	k $P(X \leq k)$	3 0.0102	4 0.0349	5 0.0922	6 0.1959	7 0.3461	8 0.5229	
	Determin and inter	e the critic pret this	cal value value.	if the sig	nificance	vel is se	at 5%,	3 marks

