MATHEMATICS 3 PERIODS PART B

Reserve QUESTIONS

DATE: 18 June 2024 Morning

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

Examination with technological tool:
Approved calculator
Pencil for the graphs

Formelsammlung/ Formula booklet/Recueil de formules

SPECIFIC INSTRUCTIONS:

- Use a different page for each question.
- Answers must be supported by explanations.
- Answers must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is shown that an appropriate method and/or a correct approach has been used.

EUROPEAN BACCALAUREATE 2024: Reserve MATHEMATICS 3 PERIODS

PART B		
	QUESTION B1 Page 1/2	Marks
	rt 1 carp are introduced into an artificial lake. The pond has limited resources d the carp population is modelled by the function N, defined by $(t)=\frac{200}{1+k \cdot 2^{-t}},$ ere t is the time expressed as a whole number of years k is a real number parameter. rp only lay their eggs once every twelve months. Based on the information given in the introduction, verify that $k=9$. Determine how long it takes for the population to exceed 90 individuals. Calculate the carp population after 15 years and after 20 years. Describe how the population is developing over a long period.	2 marks 2 marks 3 marks
	rt 2 a average length of tetra fish in a freshwater pond is well modelled by a rmal distribution of mean $\mu=8 \mathrm{~cm}$ and standard deviation of $\sigma=2 \mathrm{~cm}$. Calculate the probability, that a tetra fish chosen at random from the pond has a length: i) greater than 8 cm , ii) between 6 cm and 8 cm . Round your result to three decimal places. The probability a tetra fish chosen at random from the pond has a length of more than 6 cm is given as 0.84 . There are currently 65 tetra fish in the pond. Calculate the probability that fewer than 50 of these fish are more than 6 cm long.	2 marks 2 marks 2 marks

EUROPEAN BACCALAUREATE 2024: Reserve MATHEMATICS 3 PERIODS

EUROPEAN BACCALAUREATE 2024: Reserve MATHEMATICS 3 PERIODS

EUROPEAN BACCALAUREATE 2024: Reserve MATHEMATICS 3 PERIODS

PART B

QUESTION B2	Page 2/3	Marks

Part 2
Some people have booked a tennis course during their holiday.
While waiting to start, they watch a cannon firing tennis balls that rise slightly as they leave the cannon and then pass over the middle of the court.
The height in metres of the centre of the ball expressed in terms of the time t seconds after leaving the cannon can be modelled by the function h, defined by:

$$
h(t)=-4.9 t^{2}+4.2 t+0.5
$$

The radius of a tennis ball is 3.4 cm .
f) Determine the time in seconds at which the ball will hit the ground, noting that the centre of the ball will be 3.4 cm above the ground. Round your answer to two decimal places.
g) Determine the maximum height reached by the centre of the ball.

The height in metres of the centre of the ball can also be expressed in terms of the horizontal distance, x metres, travelled by the centre of the ball after leaving the cannon, and can be modelled by the function f, defined by:

$$
f(x)=-0.00784 x^{2}+0.168 x+0.5
$$

In the middle of the court, the top of the net is 0.9 metres above the ground. The net is 11.88 metres horizontally from the cannon.
h) Show that the ball will pass over the net.

The distance from the cannon to the opposite end of the court is 23.76 metres.
i) Show that the model predicts that the ball would not touch the ground within the court.

EUROPEAN BACCALAUREATE 2024: Reserve MATHEMATICS 3 PERIODS

PART B		
	QUESTION B2 Page 3/3	Marks
The quadratic model given above takes no account of air resistance. An adjusted model is proposed with the function g defined by: $g(x)=-0.00784 x^{2}+0.168 x+0.5-0.0003 x^{3}$ where x and $g(x)$ are measures defined in the same way as x and $f(x)$. j) Determine whether the gradient at which the ball leaves the cannon is the same for both f and g. k) Determine whether the new function, g, would provide a model for path of the ball leaving the cannon at 50 cm height and landing within the opposite end of the court.		2 marks 3 marks

