
Information and Communication Technologies — S6 — Work n°19

Python training for B Test — Snakes and ladders

The game “Snakes and ladders” is a popular game where any number of players may play. Each
player has a pawn that starts on the first cell of the game, and the goal is to be the first player whose
pawn reaches the last cell of the game. At each turn, you throw a 6-sided die, and move your pawn
according to the die roll (the 6 faces of the die show the 6 numbers from 1 to 6; if your pawn would
move past the end cell, it stays on the end cell1). If your pawn ends on the lower part of a ladder, your
pawn moves up the ladder (nothing particular happens if your pawn ends on a cell covered by a ladder
if it’s not the lower part of the ladder) and if your pawn ends on the tail of a snake, your pawn moves
down the snake down to its mouth (nothing particular happens if your pawn ends on a cell covered by
a snake if it’s not the head of the snake). In this work, we will consider the following board game (the
start cell can be labelled “0” and the end cell can be labelled “61”):

Source: https://commons.wikimedia.org/wiki/Category:Snakes_and_ladders

The objective of this project is to program different ways to play this game and to find some
properties of this game.

1In the “Game of Goose”, your pawn would go back, this is different here.

https://commons.wikimedia.org/wiki/Category:Snakes_and_ladders

1 Without Python

To play this game, we consider an array special_cells which gives, for each special cell (lower parts
of ladders, snakes tails), the cell where the pawn has to go if it ends on this cell. For example there is
a ladder that starts on cell 3 and ends on cell 20, hence special_cells[3] has the value 20. For cells
that are not special, we put the value 0.

We give in Figure 1 the content of this array:

special_cells← [0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 6, 17, 0, 2, 0, 0, 49, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0, 0, 0, 0, 21,
0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 55, 38, 0, 0, 43, 0, 0, 31, 0]

Figure 1: Content of the array “special_cells” (62 cells, from 0 to 61).

1. First, we want to count the number of ladders in the game, by looking at the special_cells
array, without looking at the board game.

(a) Let i denote the number of a cell. What test must be done on special_cells[i] to know
whether there is a ladder starting from cell i?

(b) The algorithm in Figure 2 is an attempt to count the number of ladders. In fact, this
algorithm does not compute the number of ladders. What does this algorithm compute
instead?

(c) Explain how to correct the algorithm in Figure 2.

Variables:
nb_ladders and i are two integers.
special_cells is an array of integers, defined in Figure 1.

Instructions of the function:
1 nb_ladders← 0
2 For i from 0 to 61
3 If (special_cells[i] 6= 0), Then
4 nb_ladders← nb_ladders+ 1
5 End If
6 End For
7 Return nb_ladders

Figure 2: Algorithm “ladder_count”.

2. Now, we want to simulate a single-player version of the game. There is only one pawn on the
board, that starts on cell 0. We wish to count how many die throws it takes to finish the board.

(a) The function randint(a, b) outputs an integer chosen uniformly at random between a (in-
clusive) and b (inclusive). How can we use this function to simulate a die roll?

(b) Complete the algorithm in Figure 3 to simulate the single-player game.

(c) Modify the algorithm to also count the number of die rolls needed to reach the finish cell.

(d) BONUS: In fact, there is a high probability that this algorithm will crash, at the end of the
game, in the likely case where pawn_cell will be greater than 61. Give an example where
pawn_cell will be greater than 61 and explain what will make the algorithm crash.

Variables:
pawn_cell and die_roll are two integers.
special_cells is an array of integers, defined in Figure 1.

Instructions of the function:
1 pawn_cell← 0
2 While (.), Do
3 die_roll← randint(. . . , . . .)
4 pawn_cell← pawn_cell + die_roll
5 If (special_cells[pawn_cell] 6= 0), Then
6 pawn_cell← special_cells[pawn_cell]
7 End If
8 End While

Figure 3: Algorithm “single_player”.

2 With Python

For this section, please start by downloading the following file, that contains the python implementation
of the algorithms in the previous section:

http://www.barsamian.am/2020-2021/S6ICT/TP19_Snakes_and_ladders.py

The two first questions are independant. The BONUS question uses the results from both questions.

1. Implement the function is_correct that takes as parameter an array describing a board (the
array special_cells defined in Figure 1 is one such array), and returns a boolean telling whether
this is a valid board for the game. A valid board for this game must respect the following rules:

• it has 62 cells

• it has 6 ladders (you can use function “ladder_count” already given in the python file)

• it has 7 snakes (you can write a function similare to “ladder_count” to count this)

• the total number of cells “going up” on ladders must be equal to 97 (you can use function
skipped_cells_count already given)

• the total number of cells “going down” on snakes must be equal to 114 (you can use function
lost_cells_count already given)

Remark: the special_cells array is a valid array, so please check that your function returns true
when this array is given as parameter.

2. We give the function single_player_nb_die_rolls that takes as parameter an array describing
a board, and returns the number of die rolls needed to finish the board, on one specific game (the
game simulated is different each time you call this function, because it uses random die rolls).

Please fill the function average_die_rolls that takes as parameter an array describing a board,
and returns the average number of die rolls needed to finish 10000 games.

BONUS Can you give another valid board such that the average number of die rolls needed to finish it is
at least one more than for the special_cells board? Another valid board such that the average
number of die rolls needed to finish it is at least one less than for the special_cells board?

http://www.barsamian.am/2020-2021/S6ICT/TP19_Snakes_and_ladders.py

	Without Python
	With Python

