
Information and Communication Technologies — S7 — Work n°12

Trees — Bonus Part

This week, you can choose on what you want to work. I have put some bonus exercises, feel free
to choose what you like inside.

Exercice 1 — Balanced binary trees

In this exercise, we use the same Tree class as before, see Listing 1.

1 class Tree :

2 def __init__ (self , data , left =None , right=None):

3 self .data = data

4 self .left = left

5 self .right = right

6

7 def __str__ (self):

8 return str(self .data)

Listing 1: The Tree data structure.

A binary tree is balanced (a) if it’s an empty tree or (b) if the height of its two children differs by
at most one.

Define, in Python, a function is_balanced(tree) that takes a tree as argument, and returns a
boolean telling whether the tree is balanced or not.

Unit tests:

• is_balanced(tree1) should return True (where tree1 is the tree of the left image below);

• is_balanced(tree2) should return False (where tree2 is the tree of the right image below).

Exercice 2 — Fibonacci trees

You have maybe heard about the Fibonacci sequence. It’s a sequence of integers defined recursively
in the following manner:

{

F0 = F1 = 1

∀n ≥ 2, Fn = Fn−1 + Fn−2

So for instance F2 = F1 + F0 = 1 + 1 = 2, then F3 = F2 + F1 = 2 + 1 = 3, then F4 = F3 + F2 =

3 + 2 = 5, . . .

Now let us define the Fibonacci trees as binary trees in the following manner:

• T0 and T1 are each the tree with only one empty node (e.g. define T0 and T1 as Tree("") with
the Tree data structure of previous works, also given in the previous exercise, see Listing 1).

• ∀n ≥ 2, Tn is the tree that has one empty node, as left child Tn−1 and as right child Tn−2.

1. Draw T0, T1, T2, T3 and T4.

2. Define, in Python, a function Fibonacci_tree(n) that takes a non-negative integer as argument,
and returns the associated Fibonacci tree.

Exercice 3 — n-ary trees

In this exercise, we use a new Tree_n class to define trees with any number of children, see Listing 2.

1 class Tree_n:

2 def __init__ (self , data , children =[]) :

3 self .data = data

4 self .children = children

5

6 def __str__ (self):

7 return str(self .data)

Listing 2: The n-ary tree data structure.

An n-ary tree is either the empty tree None, as before, or is a tree with a list of children. The
equivalent of a tree with two None children, as before, would be a tre with an empty list for the children
(which means it is the empty list []). In case the tree has any children, they are simply put in the
children list.

Let’s consider the same image as in a previous work:

1. Define, in Python, an n-ary tree corresponding to this image.

2. Write a function that takes as parameter an n-ary tree, and gives back the number of nodes.

3. Write a function that takes as parameter an n-ary tree, and gives back its height.

