——Information and Communication Technologies — S7 — Work n°12

TREES — BONUS PART

This week, you can choose on what you want to work. I have put some bonus exercises, feel free
to choose what you like inside.

Exercice 1 — Balanced binary trees

In this exercise, we use the same Tree class as before, see Listing 1.

Tree:
__init__(self, data, left=None, right=None):
self .data = data
self .left left
self .right = right

str__(self):
(self.data)

0~ O UL Wi

Listing 1: The Tree data structure.

A binary tree is balanced (a) if it’s an empty tree or (b) if the height of its two children differs by
at most one.

Define, in Python, a function is_balanced(tree) that takes a tree as argument, and returns a
boolean telling whether the tree is balanced or not.

Unit tests:

e is_balanced(treel) should return True (where treel is the tree of the left image below);

e is_balanced(tree2) should return False (where tree2 is the tree of the right image below).

Exercice 2 — Fibonacci trees

You have maybe heard about the Fibonacci sequence. It’s a sequence of integers defined recursively
in the following manner:

Fp=F =1
Vn>2,F,=F, 1+ F, 2

So for instance Fo = Fy + Fy =1+ 1 =2, then F3 = F5 + I} =2+ 1 =3, then Fy = F53+ F, =
3+2=5, ...

Now let us define the Fibonacci trees as binary trees in the following manner:

e Ty and T} are each the tree with only one empty node (e.g. define Ty and 7} as Tree("") with
the Tree data structure of previous works, also given in the previous exercise, see Listing 1).

e Vn > 2. T, is the tree that has one empty node, as left child 7,,_1 and as right child 7;,_».

1. Draw Ty, 11, 15, T3 and T}.

2. Define, in Python, a function Fibonacci_tree(n) that takes a non-negative integer as argument,
and returns the associated Fibonacci tree.

Exercice 3 — n-ary trees

~N O Ok W N

In this exercise, we use a new Tree_n class to define trees with any number of children, see Listing 2.

Tree_n:
__init__(self, data, children=[]):
self .data = data
self .children = children

str__(self):
(self .data)

Listing 2: The n-ary tree data structure.

An n-ary tree is either the empty tree None, as before, or is a tree with a list of children. The

equivalent of a tree with two None children, as before, would be a tre with an empty list for the children
(which means it is the empty list [1). In case the tree has any children, they are simply put in the

children list.

Let’s consider the same image as in a previous work:

1t
DEBUT

1. Define, in Python, an n-ary tree corresponding to this image.
2. Write a function that takes as parameter an n-ary tree, and gives back the number of nodes.

3. Write a function that takes as parameter an n-ary tree, and gives back its height.

