Year 6

3 Hour Mathematics Calculator Paper

June 2017

Teacher: Mr. Fielding

Duration: 90 minutes

Instructions to Students

- Answer **all** questions.
- Answers must be supported by explanations.
- Answers must show reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of your answer.
- When an answer provided is not the correct one, some marks can still be awarded if it is shown than an appropriate method and/or a correct approach has been used.

There are 7 questions on this paper with a total of 51 marks available.

If you finish within the allocated time, read your answers and check that they are sensible.

Good luck!

Question 1 : Geometric Sequence and Series (8 marks)

The 2nd term of a geometric sequence is 120 and the 4th term is 30.

a.	Show that the common ratio is $\frac{1}{2}$	(3)
ч.		(0)

b. Find the sum of the first 7 terms of the sequence. (3)

(2)

c. Find the sum to infinity of the sequence.

Question 2 : Arithmetic Sequence and Series (4 marks)

The 1st term of an arithmetic sequence is 5 and the common difference is 2.

How many terms of this sequence must be added together before the sum is greater than 666?

Draw a sketch to show this question to obtain full marks. (4)

Question 3 : Differentiation – Stationary Points (10 marks)

The function $f(x) = x^4 + 4x^3 - 4x^2 - 16x$ is defined for $x \in \mathbb{R}$

Use differentiation to determine the (x, y) coordinate for any stationary po	ints
of the function $f(x)$	(2)
Classify the nature of any stationary points in terms of local maximum or	
minimum.	(3)
Find the range of values for which the curve is increasing.	(3)
Find the equation of the tangent at $x = 1$	(2)
	Use differentiation to determine the (x, y) coordinate for any stationary poor of the function $f(x)$ Classify the nature of any stationary points in terms of local maximum or minimum. Find the range of values for which the curve is increasing. Find the equation of the tangent at $x = 1$

Question 4 : Binomial Distribution (6 marks)

In an examination hall, it is know that 12% of desks are wobbly.

In a row of 14 desks what is the probability that :

a.	There were 0 wobbly desks.	(2)
b.	All the desks were wobbly.	(2)
c.	Less than 4 desks were wobbly.	(2)

Question 5 : Probability (6 marks)

The workforce in a Mickey Mouse factory has to dress up for a fancy dress one day :

	Male	Female
Mickey Mouse	10	5
Minnie Mouse	2	12
Pluto	8	3

What is the probability that a member of the workforce is :

a.	Minnie Mouse	(2)
b.	Pluto and male.	(2)
C.	Male, given that they are dressed as Minnie Mouse	(2)

Give your answers to 2 decimal places.

Question 6 : Modelling with Sine or Cosine (7 marks)

Make sure that calculator is set to radians for this question.

The depth of water at the end of a pier can be estimated by the function

$$d(t)5.6\sin\left(\frac{\pi}{6}t\right) + 14.9$$

Where d is the depth of the water in metres and t is the number of hours after midnight.

Use your calculator to help you to draw a sketch of the graph of this function and to find the following :

a.	What is the period of this function.	(2)
b.	Estimate the depth of the water at midnight.	(1)
c.	Estiamte the depth of the water at 8am.	(1)

- c. Estiamte the depth of the water at 8am.
- d. At what time will the water reach it's highest point after midday? (2)

Question 7 : Statistics (10 marks)

The depths of snow at a ski resort are collected every year for 12 years on 31st January. All data is in centimetres.

30, 75, 125, 55, 60, 75, 65, 65, 45, 120, 70, 110.

Calculate the following :

a.	The modal depth of snow.	(1)
b.	The mean.	(1)
c.	The median.	(1)
d.	Find the five number summary.	(2)
e.	From this calculate the range and interquartile range.	(2)
f.	Show the data in a box and whisker plot.	(3)