S6 MATHEMATICS - 3 Periods PART B

DATE: 19 ${ }^{\text {th }}$, December 2018

DURATION OF THE EXAMINATION: 90 minutes

Total: 65 points

With Calculator

NUMBER OF PUPILS: 9

EXERCISE 1-B:

The figure represents the graph of a derivate function f^{\prime} of a function f.

a) Give the x-coordinates of the extrema of f and state their nature.
b) From the graph of f^{\prime} find the slope of the tangent to the graph of f at $x=-1$.
c) Find the solutions for $f^{\prime}(x)=6$.
d) The graph of function f passes through point $P(0,1)$. Find the equation of the tangent to the graph of f at point P.

EXERCISE 2-B:

Consider the function $f(x)=-x^{3}-3 x^{2}+5 x+7$ and its graph F.
a) Draw a table of signs showing the variations of function f.
b) Find the coordinates of the turning points of F and state their nature.

Give answers correct to 1 d.p.
c) Find the equation of the tangent to the graph at $x=-1$.
d) Find the coordinates of the points on F where the tangent has slope 5 .
e) Find the equation of the tangents to F with slope 5 .

EXERCISE 3-B:

A volleyball player serves from the back line of the court to send the ball into the adversary camp. The height h of the ball, in meters, is given by the following function :
$h(t)=-4.9 t^{2}+3.8 t+1.7$, where t is in seconds.
(For this exercise give all answers correct to 2 d.p.)
a) What is the maximum height reached by the ball?
b) After how long will the ball fall to the ground?
c) For how long does the ball stay above 1.5 m ?
d) The ball will reach the net at $t=0.6 \mathrm{~s}$. The height of the net is 2.34 m . Will the ball pass over the net into the adversary camp? Explain.

EXERCISE 4-B:

Consider the function $g(x)=\frac{a x-5}{-3 x+1}$ and its graph G.
a) What is the domain of function g ?
b) Give the equation of the vertical asymptote to G.
c) $y=-2$ is an asymptote to G. Determine the value of a.
d) What is the range of function g ?
e) Find the coordinates of the intersections points of G with the x and y axis.
f) Find the intersection points between G and the line $y=x+1$.

EXERCISE 5-B:

A function $f(x)$ has one local minimum at $(1,-5)$. State the coordinates of the local minimum of the following functions:
a) $f(x-5)+7$
b) $f(x+4)+1$
a) The figure represents the graph of a function $g(x)$. Sketch a possible graph for the function $g^{\prime}(x)$ on the same grid.

b) The figure represents the graph of a derivate function $f^{\prime}(x)$. Sketch a possible graph for the function $f(x)$ on the same grid.

