SCUOLA EUROPEA VARESE

S6 MATHEMATICS – 3 Periods PART B

DATE: 19th, December 2018

DURATION OF THE EXAMINATION: 90 minutes

Total: 65 points

With Calculator

NUMBER OF PUPILS: 9

INSTRUCTIONS: ANSWER QUESTION 6-B ON THE GRAPH PROVIDED AND RETURN WITH OTHER ANSWER SHEETS

SCUOLA EUROPEA VARESE EXERCISE 1-B:

The figure represents the graph of a derivate function f' of a function f.

a) Give the x-coordinates of the extrema of f and state their nature.	[6]
b) From the graph of f' find the slope of the tangent to the graph of f at $x = -1$.	[2]
c) Find the solutions for $f'(x) = 6$.	[3]
d) The graph of function f passes through point $P(0, 1)$. Find the equation	
of the tangent to the graph of f at point P .	[4]

EXERCISE 2-B:

Consider the function $f(x) = -x^3 - 3x^2 + 5x + 7$ and its graph *F*.

a) Draw a table of signs showing the variations of function <i>f</i> .	[6]
b) Find the coordinates of the turning points of F and state their nature.	
Give answers correct to 1 d.p.	[2]
c) Find the equation of the tangent to the graph at $x = -1$.	[2]
d) Find the coordinates of the points on <i>F</i> where the tangent has slope 5.	[2]
e) Find the equation of the tangents to <i>F</i> with slope 5.	[2]

EXERCISE 3-B:

A volleyball player serves from the back line of the court to send the ball into the adversary camp. The height h of the ball, in meters, is given by the following function :

 $h(t) = -4.9t^2 + 3.8t + 1.7$, where t is in seconds.

(For this exercise give all answers correct to 2 d.p.)

- a) What is the maximum height reached by the ball? [3]
 b) After how long will the ball fall to the ground? [3]
 c) For how long does the ball stay above 1.5 m? [3]
- c) For how long does the ball stay above 1.5 m?
 d) The ball will reach the net at t = 0.6 s. The height of the net is 2.34 m.
- Will the ball pass over the net into the adversary camp? Explain. [3]

EXERCISE 4-B:

Consider the function $g(x) = \frac{ax-5}{-3x+1}$ and its graph *G*.

- a) What is the domain of function g? [2]b) Give the equation of the vertical asymptote to G. [2]
- c) y = -2 is an asymptote to *G*. Determine the value of *a*. [2]
- d) What is the range of function *g* ? [2]
 - e) Find the coordinates of the intersections points of *G* with the *x* and *y* axis. [2]
 - f) Find the intersection points between *G* and the line y = x + 1. [2]

EXERCISE 5-B:

A function f(x) has one local minimum at (1, -5). State the coordinates of the local minimum of the following functions:

a) $f(x-5) + 7$	[2]
b) $f(x+4) + 1$	[2]

a) The figure represents the graph of a function g(x). Sketch a possible graph for the function g '(x) on the same grid. [4]

b) The figure represents the graph of a derivate function f'(x). Sketch a possible graph for the function f(x) on the same grid.

[4]

--- END OF EXAM ----