Uccle Schola Europaea - Bruxelles		S6MA3ENA MATHEMATICS 3 PE B TEST WITH CALCULAT DATE : 25/06/19 08:30-10:00 TEACHER : C. SEARI	IODS R
TiNSPIRE permitted in press-to-test mode.			
/ 60	Comments		Signature

TIME ALLOWED

- 90 minutes

NOTES

- Answer all questions.
- Answers must show reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of your answer.
- Unless indicated otherwise, full marks will not be awarded if the correct answer is not accompanied by supporting evidence of how the results have been achieved.
- When an answer provided is not the correct one, some marks can still be awarded if it is shown than an appropriate method and/or a correct approach has been used.

There are 6 questions on this paper.
Each question is worth $\mathbf{1 0}$ marks with a total of $\mathbf{6 0}$ marks available.

If you finish within the allocated time, read your answers and check that they are sensible.
Good luck !

	Functions	
Q1	The functions $f(x)$ and $g(x)$ are defined to be $\begin{aligned} & f(x)=x^{2}+2 x \quad x \in \mathbb{R} \\ & g(x)=\frac{1}{x+2} \quad x \in \mathbb{R}, x \neq-2 . \end{aligned}$	[3 marks]
(a)	Draw a sketch of the graph of $f(x)$ labelling clearly the coordinates for the vertex and all points where the graph intersects the coordinate axes.	
	The range for $g(x)$ is written $g(x) \in \mathbb{R}, g(x) \neq 0$. What is the range for $f(x)$?	
(c)	Write explicitly an expression for the composite function $g(f(x))$ and thus evaluate $g(f(2))$.	[2 marks]
(d)	Solve the equation $g(f(x))=\frac{1}{10} .$ Is the function $g(f(x-1))$ an odd function or an even function? Give a reason for your answer.	[1 mark]
		[2 marks]
		[2 marks]
	Arithmetic and Geometric Series	[5 marks]
Q2		
	You must justify your answers by writing all calculations that are relevant to your solutions.	
(a)	The 4th term of a geometric series is 10 and the 7th term is 80 .	
	Use this information to find the common ratio and the first term for this series and hence find the sum of the first 15 terms.	
(b)	A different series begins by adding the following numbers $14+19+24+\ldots .$	[5 marks]
	How many terms of this series must be added together in order to exceed the sum of the first 15 terms of the geometric series?	

	Polynomial Differentiation	
Q3	The function $\quad y=2 x^{3}-5 x^{2}-4 x+2$ is defined for $x \in \mathbb{R}$.	
(a) (b)	Use differentiation to determine the (x, y) coordinate for any stationary points of the function y	[2 marks]
(c)	Classify the nature of any stationary points in terms of local maxima or minima.	[3 marks]
(d)	Find the range of x values for which the curve is increasing.	[2 marks]
	Find the equation of the tangent line at $x=1$	[3 marks]
	Probability	
Q4	Andy can walk to work, cycle or travel by bus. The choice he makes depends on the weather.	
(a)	Copy and complete the tree diagram to show the probabilities for each of Andy's methods of travel.	
(b)	A day is selected at random. Calculate the probability of the following events:	[2 marks]

(b)	cm2. Find an expression for h, in terms of x.	[2 marks]
(c)	Show that the volume $V(x)=100 x-\frac{4}{3} x^{3}$. (d) Determine the maximum volume possible for the cuboid and determine the value of h that achieves this. You should explain in your answer how you know that this will be a maximum value.	[2 marks] mark]
	End of Examination	[5 marks]

