S6MA3ENA - Semestre 1

MATHEMATICS 3

Part A

Date: Wednesday 15th December 2021

DURATION OF EXAMINATION:

1 hour 30 minutes (90 minutes)

Answer ALL questions

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.
K. Osborne

PART A	Marks
1) Give the derivative $f^{\prime}(x)$ of the following functions: (a) $f(x)=x^{3}-3 x^{2}$ (b) $f(x)=2 x^{2}+x-3$ (c) $f(x)=\frac{1}{2} x-\frac{1}{3} x^{3}+\frac{2}{3} x^{6}$	2 2 2
2) Consider the graph of the function f shown below. The line r is a tangent line to the graph of f at point A .	
(a) Use the information in the diagram to find the equation of the line r. (b) Given that $f(x)=x^{3}-3 x^{2}+2 x+1$, use the diagram or otherwise to find the value of $f^{\prime}(0)$.	4 4

3) A town`s population is growing linearly. In 2018 the population was 5000. By 2020 the population had increased to 7400 .
(a) Give the function $P(t)$ where P is the population and t is the number of years since 2018.
(b) Use your function $P(t)$ to predict the population in 2025.
(c) According to this model in which year will the population reach 19400 ?
4) The function f is defined as $f(x)=2 x^{2}-8 x+8$.
(a) Determine the coordinates of the y-intercept.
(b) Calculate $f(2)$
(c) Determine the derivative $f^{\prime}(x)$.
(d) For what value of x does the function $f(x)$ have a turning point? State the nature of the turning point and explain your answer.
(e) Find the equation of the tangent to the curve at the point $(1,2)$.
(f) The point A is a point on the graph of f. The gradient at the point A is equal to 12 . Find the coordinates of the point A.
5) The diagram below shows the graph of the function $f(x)=\frac{a x+b}{x+c}$. The dotted blue lines represent the asymptotes. The graph passes through the point $\left(0,-\frac{1}{2}\right)$.
(a) Give the equation of the vertical asymptote.
(b) State the domain of the function.
(c) Find value of c.
(d) Give the equation of the horizontal asymptote.
(e) State the range of the function.
(f) Find value of a.
(g) A student says that the value of b is 1 . Are they correct? You must justify your answer.

6) The graph of the derivative $f^{\prime}(x)$ is given below.

a) Give the x-coordinates of the two turning points.
b) For which values of x is the graph of $f(x)$ increasing?
c) For which value of x does $f(x)$ reach a minimum?
d) Sketch a possible graph of $f(x)$, given that the point $(8,0)$ lies on the graph of $f(x)$.
7) The graph below is the graph of the function $f(x)$.

Which of the 4 graphs below is the corresponding graph of $f^{\prime}(x)$?

For each graph you must explain why it is or is not the correct graph.

