S6MA3ENA - Semestre 1

MATHEMATICS 3

Part B

Date: Wednesday 15th December 2021

DURATION OF EXAMINATION:

45 minutes

Answer ALL questions

SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is evident that an appropriate method and/or a correct approach has been used.
K. Osborne

PART A	Marks
1) Consider the function $f(x)=x^{3}-4 x^{2}+x+2$.	
(a) Determine the coordinates of the turning points of $f(x)$, giving your	
answer to 2 decimal places.	4
(b) Draw a table of signs.	2
(c) Use the table of signs to determine the nature of the turning points.	2
2) Consider the function $f(x)=\frac{6 x+5}{3 x-4}$.	2
(a) Explain why the function is undefined when $x=1 \frac{1}{3}$.	2
(b) State the domain of the function.	2
(c) Give the coordinates of the y-intercept of $f(x)$.	3
3) Karen plays volleyball and throws a ball vertically. The height $h(t)$	3
(in meters) as a function of the time t (in second) of the ball is given	
by the formula: $h(t)=6 t-5 t^{2}+2$.	3
(a) From what height does Karen throw the ball?	2
(b) Show that the ball reaches its highest point at $t=0.6 \mathrm{~s}$.	2
(d) For how long is the ball in the air?	2

4) A group of scientists decides to investigate a population of insects in a large field. It is found that the starting population 100 and that the population increases exponentially by 20% every week.

Two students each write down a formula to model the population P at a time t, where t is the number of days since the start of the investigation:

Formula A: $P(t)=100 t+1.2$
Formula B: $P(t)=100 \cdot(1.2)^{t}$
(a) Explain why formula B is the correct formula and why formula A is incorrect.
(b) Calculate the number of insects after 2 weeks, to the nearest whole number.
(c) Copy and complete the table of values below, giving your answers to the nearest whole number:

Number of days	5	10	15	20
Population				

(d) After how many days will the population exceed 4600 ?

Another group of scientists investigates a population of insects in a different large field. They record their results in the table below:

Number of days	0	5	10	15	20
Population	100	340	580	820	1060

(e) Explain why the results follow a linear model.
(f) Use the information in the table of values to write down a formula to model the population P at a time t, where t is the number of days since the start of the investigation.

