## 6E Mathematics - 3 Periods Part A - Without Calculator

DATE: $15^{\text {th }}$ June 2022

## DURATION OF THE EXAMINATION:

## 45 Minutes

## AUTHORISED MATERIAL:

Formula Booklet

## SPECIAL INSTRUCTIONS:

- No calculator allowed
- Answer all questions
- Do not spend too long on one question

- Poorly presented work may result in marks being deducted
- The total mark is 35
- Answers must be supported by explanations, showing the reasoning for the results or solutions given.
- If graphs are used to find a solution, they must be sketched as part of the answer
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved
- If the answer provided is incorrect, some marks may still be awarded if it is shown that an appropriate method and/or a correct approach has been used

6E $2^{\text {nd }}$ Semester Exam 2021/2022
3P Maths, Teacher: A Boothroyd

| PART A |  |  |
| :---: | :---: | :---: |
|  | Page 3/5 | Marks |
| A1 | A tetrahedral dice is labelled with four numbers: 1, 2, 3 and 4 . <br> The dice is thrown three times. <br> Let $X$ represent the number of times a 1 is obtained. <br> Determine the probability distribution of the variable $X$ and calculate its expected value. | 6 |
| A2 | In a family of 4 people (two parents and their two children), each has a smartphone of the same make and model. <br> The probability that this 'basic' model will fail during the year is $20 \%$. <br> Calculate the probability that exactly two of the members of this family will have their smartphone fail during the year. | 6 |
| A3 | The graph below shows the height above the ground of a cabin on a Ferris wheel as a function of time. <br> The Ferris wheel takes 5 minutes to complete one full rotation. <br> The cabin follows a circular path between the heights of 0 m and 65 m above the ground. <br> a) Determine the coordinates of points A and B on the graph above. <br> b) Explain how the graph would change if the Ferris wheel were to take 10 minutes to complete a circuit. <br> c) Describe any limitations of this model when applied to the practical situation. | 2 2 2 |


|  | Page 4/5 | Marks |
| :---: | :---: | :---: |
| A4 | For each of the situations A to E described below, state whether the model involves: <br> a) (i) Growth <br> (ii) Decay <br> (iii) Neither <br> and whether the model is: <br> b) (i) Linear <br> (ii) Exponential <br> (iii) Quadratic <br> (iv) Sinusoidal <br> A: A population of 100 mice increases by $20 \%$ each week under favourable conditions <br> B: A tree which is 1.2 m tall when planted grows 30 cm each month during the growing season <br> C: The height, $h$, of a stone $t$ seconds after being dropped from the top of a tower is modelled by the function $\quad h(t)=130-5 t^{2}$ <br> D: The number of daylight hours in Blankenloch varies periodically each year between 16 hrs 12 mins and 8 hrs 13 mins <br> E: $\quad$ The temperature, $T$, of a liquid, $t$ minutes after being placed in a refrigerator, is given by the function $T(t)=98 \times 2^{-\frac{t}{50}}$ | 10 |

## Go to next page

A5 2 The diagram shows the graphical representation of a sine function, $f$.

The end

