

# **6E Mathematics – 3 Periods**

## Part B – With Calculator

**DATE:** 15<sup>th</sup> June 2022

#### **DURATION OF THE EXAMINATION:**

90 Minutes

#### **AUTHORISED MATERIAL:**

Formula Booklet Scientific Calculator

#### **SPECIAL INSTRUCTIONS:**

- Answer all questions
- Do not spend too long on one question
- Poorly presented work may result in marks being deducted
- The total mark is 65
- Answers must be supported by explanations, showing the reasoning for the results or solutions given.
- If graphs are used to find a solution, they must be sketched as part of the answer
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved
- If the answer provided is incorrect, some marks may still be awarded if it is shown that an appropriate method and/or a correct approach has been used



6E 2<sup>nd</sup> Semester Exam 2021/2022 3P Maths, Teacher: A Boothroyd



| PART B                                                                         |                                                                                                                                           |   |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|
| Question 1/4                                                                   |                                                                                                                                           |   |  |  |  |  |  |  |
| (0                                                                             | Give your answers to this question accurate to 4 decimal places where appropriate)                                                        |   |  |  |  |  |  |  |
| Many s                                                                         | quirrels live in the forest around the ESK in Waldstadt.                                                                                  |   |  |  |  |  |  |  |
| When a probabi                                                                 | squirrel leaves the forest to go to the trees inside the school grounds, the lity of it being seen by a student is $1/3$ .                |   |  |  |  |  |  |  |
| One morning, 10 squirrels decide to go to the trees inside the school grounds. |                                                                                                                                           |   |  |  |  |  |  |  |
| Let <i>X</i> represent the number of squirrels which are seen by a student.    |                                                                                                                                           |   |  |  |  |  |  |  |
| a)                                                                             | Calculate the probability that exactly 7 squirrels will manage to get to the trees in the school grounds without being seen by a student. | 4 |  |  |  |  |  |  |
| b)                                                                             | Calculate the probability that less than two squirrels will be seen by a student.                                                         | 4 |  |  |  |  |  |  |
| c)                                                                             | Calculate $E(X)$ . Interpret this result.                                                                                                 | 4 |  |  |  |  |  |  |
| d)                                                                             | Calculate the standard deviation of <i>X</i> .                                                                                            | 3 |  |  |  |  |  |  |

| Question 2/4                                                                                                                                             |                                                                                |          |               |  |               |  |   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|---------------|--|---------------|--|---|--|--|--|--|--|
| A fair coin is tossed three times in a row and the results obtained are noted.                                                                           |                                                                                |          |               |  |               |  |   |  |  |  |  |  |
| For example, 'Heads, Heads, Tails' is an outcome that may be noted HHT.                                                                                  |                                                                                |          |               |  |               |  |   |  |  |  |  |  |
| a)                                                                                                                                                       | Determine the probability of getting Heads at least twice.                     |          |               |  |               |  |   |  |  |  |  |  |
| For each toss, 20 points are awarded for Heads and 10 points for Tails.<br>Let <i>X</i> represent the sum of the points obtained after the three tosses. |                                                                                |          |               |  |               |  |   |  |  |  |  |  |
| b)                                                                                                                                                       | Calculate $P(X = 40)$ .                                                        |          |               |  |               |  |   |  |  |  |  |  |
| c)                                                                                                                                                       | Copy and complete the probability distribution table for <i>X</i> shown below. |          |               |  |               |  |   |  |  |  |  |  |
|                                                                                                                                                          | x 30 60                                                                        |          |               |  |               |  |   |  |  |  |  |  |
|                                                                                                                                                          |                                                                                | P(X = x) | $\frac{1}{8}$ |  | $\frac{1}{8}$ |  | 4 |  |  |  |  |  |
|                                                                                                                                                          |                                                                                |          |               |  |               |  |   |  |  |  |  |  |
| d)                                                                                                                                                       | Calculate the expected value of <i>X</i> and interpret this result.            |          |               |  |               |  |   |  |  |  |  |  |



| PART B                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |   |  |       |   |   |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|---|--|-------|---|---|--|
| Question 3/4                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |   |  | Marks | ; |   |  |
| In a village with 700 inhabitants, 14 of them decide to start a rumour at the same time. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |   |  |       |   |   |  |
| After 15 hours the rumour has been heard by all of the inhabitants.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |   |  |       |   |   |  |
| A linear function is proposed to model this problem.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |   |  |       |   |   |  |
| a)                                                                                       | Explain why the function $f(t) = 45.73t + 14$ could be used to model this problem, what the variables $f \& t$ represent with units, and what the numbers represent.                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |   |  |       |   | 5 |  |
| b)                                                                                       | Determine the domain of the function.                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |   |  |       | 2 |   |  |
| c)                                                                                       | Use this function to calculate the time taken for half of the inhabitants to have heard the rumour.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |   |  | 3     |   |   |  |
| d)                                                                                       | Use this function to calculate the time taken for half of the inhabitants to have heard the rumour.<br>Copy the graph below onto your 5mm square answer paper using a scale of 1cm for 1 unit on the horizontal axis and 1cm for 50 units on the vertical axis.<br>Draw the line representing the function <i>f</i> on your copy of the graph. One of the points has already been marked for you with an X (the point marked O is used later in the question). |  |  |  |  |  |  |  | 3 |  |       |   |   |  |
|                                                                                          | (This question continues on the next page)                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |   |  |       |   |   |  |



| Question 3/4 (continued)                               |                                                                                                                                              |   |  |  |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|
| Another function is now proposed to model this problem |                                                                                                                                              |   |  |  |  |  |  |  |
| $g(t) = 14 \cdot 1.298^t$                              |                                                                                                                                              |   |  |  |  |  |  |  |
| e)                                                     | Give the name of the type of model represented by function $g$ .                                                                             | 1 |  |  |  |  |  |  |
| f)                                                     | Draw the line representing the function $g$ on the same graph as for $f$ above. One of the points has already been marked for you with an O. | 3 |  |  |  |  |  |  |
| g)                                                     | Using your graph or otherwise, determine also for this function the time taken<br>for half of the inhabitants to have heard the rumour.      | 3 |  |  |  |  |  |  |
| h)                                                     | Compare the two functions $f$ and $g$ and decide, with a reason, which is the better model for this situation.                               | 4 |  |  |  |  |  |  |

| PART B                                                                                                                                                                                                                |                           |                                    |               |               |               |            |   |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|---------------|---------------|---------------|------------|---|--|--|--|--|
| Question 4/4                                                                                                                                                                                                          |                           |                                    |               |               |               |            |   |  |  |  |  |
| The depth of water at a landing jetty in a small harbour on the North Sea varies according to time due to the tide. There are two tides every day at this harbour.                                                    |                           |                                    |               |               |               |            |   |  |  |  |  |
| The depth was measured at 3-hour intervals on 15 <sup>th</sup> June and the following figures were recorded.                                                                                                          |                           |                                    |               |               |               |            |   |  |  |  |  |
|                                                                                                                                                                                                                       | Time                      | Time 00:00 03:00 06:00 09:00 12:00 |               |               |               |            |   |  |  |  |  |
|                                                                                                                                                                                                                       | Depth (m)                 | Depth (m) 3.6 5.2 3.6 2.0 3.6      |               |               |               |            |   |  |  |  |  |
| The depth of water can be modelled by a sine function.                                                                                                                                                                |                           |                                    |               |               |               |            |   |  |  |  |  |
| a)                                                                                                                                                                                                                    | a) Show that the function |                                    |               |               |               |            |   |  |  |  |  |
| $h(t) = 1.6 \cdot \sin(0.5236t) + 3.6$<br>can be used to model the depth of water <i>h</i> (metres), at time <i>t</i> (hours), explaining<br>how each of the three constants can be found from the data in the table. |                           |                                    |               |               |               |            |   |  |  |  |  |
| A large ferry from a nearby island requires a minimum depth of 4m to be able to dock at the jetty.                                                                                                                    |                           |                                    |               |               |               |            |   |  |  |  |  |
| b) Show that the earliest time that the ferry can dock at the jetty on 15 <sup>th</sup> June is 00:29 (rounded to the nearest minute).                                                                                |                           |                                    |               |               |               |            |   |  |  |  |  |
| c)                                                                                                                                                                                                                    | Find the la               | atest time bef                     | fore midday v | when the ferr | y can dock at | the jetty. | 3 |  |  |  |  |

### The end