École européenne de strasbourg	Date	21/06/2022
	Class	S6EN
		MATHEMATICS
	Subject	3-Period
		PART B
	Duration	90 Minutes
	Teacher	D. Shaw

NAME :		
Marks	Comments	Signature
/65		

Exam WITH calculator

Instructions

- This exam consists of 6 questions on 6 pages including this cover page.
- All questions are compulsory.
- Answer on squared paper (provided) and submit the question paper with your answers.
- Any attempt at cheating will result in the immediate cancellation of your exam.
- Read all the questions calmly and thoroughly and show all workings clearly.

Good luck!

Consider a rapid test to determine infection with a certain disease. We know that someone who has the disease will be correctly diagnosed 96% of the time. Someone who does not have the disease will be falsely diagnosed, a false positive, 2% of the time.

The disease is prevalent in 0.4% of the population.

- a) A patient takes a test. Calculate the probability that they will get a /3 positive result.
- b) The test result comes back positive. Calculate the probability that the /4 patient has the disease given that they got a positive result.

Question 2: [7 Marks]

When you play roulette at a casino, we can bet on one of the 37 numbers	
from 0 to 36. Alternatively you can bet on the colour red or black (0 is	
coloured green).	
For the remainder of the question, consider a bet of €100.	
a) If you bet on red and the ball falls on one of the 18 red compartments, your money is doubled.	/3
Calculate the Expected value of the random variable X : « amount won betting on red ».	
 b) Compare this value with the Expected value of the random variable Y : « Amount won betting on a specific number ». If the ball stops in the compartment you have bet on, you receive 36 times what you bet. 	/4

Question 3: [11 Marks]

From a group of 10 runners and 15 non-runners, a university researcher selects 5 people for a study on cardio-vascular disease.	
screets 5 people for a study on cardio-vascular disease.	
a) How many groups is it possible to make if we make no distinction between the runners and the non-runners?	/3
b) How many groups is it possible to make if we want exactly three runners participating in the study?	/4
c) What is the probability that, given a random selection of participants in the study, that there would be exactly three runners in the group?	

Question 4: [14 Marks]

Consider the function f defined by $f(x) = -\frac{x^3}{3} - \frac{x^2}{2} + 6x + 4$.	
1) Determine an expression for f' , the derivative of the function f .	/4
2) Study the sign of f' (make a sign table).	/6
3) Determine the interval in which the function f is increasing.	

The function, $f(x) = 60Cos\left(\frac{2\pi}{30}(t-15)\right) + 75$ can be used to model the height of a passenger above the ground on the London Eye, where t is the time in minutes after departure.		
a) Determine the period of the London Eye.	/2	
 a) Determine the period of the London Eye. b) Determine the amplitude of the London Eye. c) Use this function to estimate the height of a passenger 18 minutes after departure. d) What height above the ground is the boarding platform? e) Sketch the graph of the function f(x). f) Use your graph to estimate how long a passenger would spend more than 100m above the ground. 		

Question 6: [10 Marks]

Below are three functions labelled A, B, C, D and E and their derivatives labelled I, II, III, IV and V. Match each function to its corresponding derivative.

