MATHEMATICS 3 PERIODS
 PART A

DATE: DD/MM/YYYY

DURATION OF THE EXAMINATION: 120 minutes

EXAMINATION WITHOUT TECHNOLOGICAL TOOL

AUTHORISED MATERIAL:

Formula Booklet

Notes:

- As this is a sample paper the cover page is likely to change.
- This sample paper should only be used to see how questions can be created from the syllabus focusing on competences rather than strictly on content.
- The keywords found in the syllabus are highlighted in bold to help the candidate see which competency the question is focusing on and thus helping in answering the question.

PART A		
	Page 3/4	Marks
S6	The number of bacteria in a petri dish is investigated in a laboratory. It turns out, that under certain conditions, the growth can be modelled by the function $N(t)=10000 \cdot e^{\ln (1,03) \cdot t}$ where $N(t)$ is the number of bacteria after t days. a) Give the number of bacteria at the beginning and the growth rate in percent. b) Calculate the number of bacteria after the first day. c) Explain, why this model cannot be used on a very large time scale.	5
S7	Indicate if the statement is true or false and reason your answer. Note that the points are only given if answer and reason are correct. a) If the temperature $T(x)$ is constantly increasing, then $T^{\prime}(x)>0$. b) All periodic models can be modelled by a sine function. c) There are 9 different possibilities for 3 pupils to stand next to each other. d) When some dice is rolled once, the expected value is 3.5 . e) If 10 people are chosen out of a very large group, the number of females can be modelled by a binomial distribution, although a person cannot be chosen more than once.	5
58	The daylength $L(t)$ in hours on a certain location was recorded over one year. It can be modelled by the function $L(t)=4 \cdot \sin \left(\frac{2 \pi}{365} x\right)+12$ where t is the time in days. Interpret the outcome of $\int_{0}^{365} L(t) d t$ and explain, why the result is equal to $12 \cdot 365=4380$.	5
S9	a) Interpret what is meant by expected value of a random variable. b) X is a random variable following a normal distribution with expected value μ and standard deviation σ. Give a probability taking into account these two characteristic values μ and σ. c) A continuous random variable Y defined over \mathbb{R} is such that $P(a \leq y \leq b)=\int_{a}^{b} f(z) d z$. Explain why $\int_{-\infty}^{+\infty} f(z) d z=1$.	5

