Part A Answers

	Part A				Points				
		KC	М	PS	I				
	A little hill on a playground can be modelled by a function f with $f(x) = -\frac{1}{3}x^3 + x^2$, for $x > 0$ where x is the distance in m and $f(x)$ is the height in m. The picture shows the graph f of this function.								
	f(x)								
	f height of this hill.	×							
$f'(x) = -x^2 - x^2 - x$	+2x	1	1						
f'(x)=0		1							
$-x^2 + 2x = 0$									
$x \cdot (-x+2) =$	= 0								
$x = 0 \lor -x +$	2 = 0								
$x = 0 \lor x = 2$			1						
$f(2) = -\frac{8}{3} + $	$4 = -\frac{8}{3} + \frac{12}{3} = \frac{4}{3} \approx 1.33$								
The height is a	bout 1.33 m.		1						
	After some complaints about the lunch in the canteen, the manager claims that at most only 20%								
20% of the pup	of all 2,500 pupils are not satisfied with the lunch. The pupils committee thinks that it is more than 20% of the pupils. So, they ask a group of 40 randomly chosen pupils for their opinion. a) Explain whether a left or a right sided test should be used to verify this hypothesis. Reason								
b) State t hypoth	the null hypothesis H ₀ that could be used for a NHST test and nesis H ₁ . nine the critical value k with the help of the following table	-							
	5% and interpret this value.								

		k	8	9	10	11	12	13	14	1	.5		
		$P(X \ge k)$	0.563	0.407	0.268	0.161	0.088	0.043	0.019	-	.008		
	a)	A right sided		oropriat	e, becau	ise the p	upils wa	nt to		1	1		
		show, that p	is higher.										
	b)	$H_o: p \le 0.2$	and $H_1: p$	> 0.2						1			
	c)	k = 13,											
		because $P(\lambda)$	(= 12) >	0.05 an	$\operatorname{P}(X =$	= 13) <	0.05						
		That means,			ents are	e not sati	sfied, th	e mana	ger				
		is proved to										1	1
3		supermarket							e mana	gen	nent, b	out only	y one
		nanagers is fe						-					
		hat it depend						-		his	compa	any.	
	_	en informatio	on can be p	out into	a contin	gency ta	ble to re	econstru	ct				
	the mis	sing values.											
		agement											
	F: fema	ale											
			F		\overline{F}								
		<u>M</u>	1		9		10						
		M	809		81		890				1	1	
			810		90		900						
	Depend	lency of the t				by using t	the form	iula.					
			P	$(F \cap M)$	=								
			Ň		900					1		1	
			81	0 10	9 1	9	1			T		L T	
		$P(F) \cdot P$	$(M) = \frac{810}{900}$	$\frac{1}{10} \cdot \frac{10}{000}$	$=\frac{1}{10}\cdot\frac{1}{0}$	$\frac{1}{2} = \frac{1}{2}$	$r = \frac{1}{100}$						
			900	J 900	10 9	0 900	100				1		
			$P(F \cap$	$M) \neq P$	$P(F) \cdot P($	(M)					-		
4	A coupl	e needs a ne					oad. It i	s known	that 20)%	of the	tests	show
		ive result, alt	-										
	-	sitive result	-	•			-	-	-		•		0
	•	ne is also infe									,		
	Explain	, why this site	uation is a	Bernoul	li proces	ss and sh	ow , tha	t the pro	babilit	y of	f a fals	e nega	tive
	-	rops down to			-		,	•		<i>.</i>		0	
		sts are indep		-			nes, the	test can					
		or wrong an											
	each te	-	1			U				2	3		
		P(X =	2) = B(2)	; 0,2; 2)	$= 0,2^{2}$	= 0,04 =	= 4%						
5	In the d	liagram show						es in Ge	rmany	is s	hown	over a	
		of 3 weeks in							-				
	-	natical mode			-								
	mather	natical mode	ls can be c	ombine	d.								

New cases in Germany			
9000	—		
8000	_		
7000	—		
6000	_		
ğ 5000			
a 5000			
3000			
2000			
1000	_		
0 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 2	21.		
Okt)kt		
Give the names of these types of models and reason your answer.			
Predict a date in the future when another maximum will be reached, when the r	umber	s follov	w the
models.	1		
Since the numbers are oscillating with a period of 7 days, a periodic model can be used on a small-scale level. However, the numbers are			
altogether increasing on a large-scale level. To model this development, 1	1	2	1
an exponential model could be used, because neither maxima nor	1	2	Т
minima fit a straight line.			
The next maximum will be reached on 24. October.			
6 The number of bacteria in a petri dish is investigated in a laboratory. It turns out	, that u	nder	
certain conditions, the growth can be modelled by the function			
$N(t) = 10\ 000 \cdot e^{\ln(1,03) \cdot t},$			
where $N(t)$ is the number of bacteria after t days.			
a) Give the number of bacteria at the beginning and the growth rate in per	cent.		
b) Calculate the number of bacteria after the first day.c) Explain, why this model cannot be used on a very large time scale.			
a) The experiment starts with 10 000 bacteria. Per day, the number 2	1		
increases by 3%.			
b) $N(1) = 10\ 000 \cdot 1,03 = 10\ 000 + 300 = 10\ 300$	2		
c) At some stage, the petri dish is full of bacteria and there is no			1
more space or nutrition, so the growth will stop.			
7 Indicate if the statement is true or false and reason your answer. Note that the	points a	are only	Ý
given if answer and reason are correct.			
 a. If the temperature T(x) is constantly increasing, then T'(x) > 0. b. All periodic models can be modelled by a sine function. 			
c. There are 9 different possibilities for 3 pupils to stand next to each other			
d. When some dice is rolled once, the expected value is 3.5.	•		
	. can he	e mode	lled
	v Call Dr		
e. If 10 people are chosen out of a very large group, the number of females			
e. If 10 people are chosen out of a very large group, the number of females by a binomial distribution, although a person cannot be chosen more the	an once		

	r		r	1		r						
	b)	False, because the red light of a traffic light be a periodic model. But the light is either on or off with no stages in between, so it cannot be modelled by a sine function.	1									
	c)	False, because this example is without repetition. So, in fact there are 6 possibilities.			1							
	d)	True, because $E(X) = (1 + 2 + 3 + 4 + 5 + 6): 6 = 3.5$		1								
	e)	True, because the change in the probability is rather small, when we have a large group. Beside a constant probability, there can only be two options to choose from (male and female) and it must be a random choice.		1								
8		ylength $L(t)$ in hours on a certain location was recorded over one ye function	ear. It	can be	mode	lled						
	by the	$L(t) = 4 \cdot \sin\left(\frac{2\pi}{365}x\right) + 12,$										
	where <i>t</i> is the time in days.											
	Interpr	Let the outcome of $\int_0^{365} L(t) dt$ and explain , why the result is equal to	to 12 ·	365 =	= 4380).						
	The tot	al amount of daylight hours in one year can be calculated by the lof the function between 0 and 365:				1						
		$\int_{0}^{365} L(t). dt$										
	same v the inte Since L	e function is symmetrical, so the area above the x-axis has the alue as the area below the x-axis on the interval of one period. So, egral would be zero. (t) is shifted by 12 units and culate the area under the graph for 365 days, the result is $12 \cdot 4380$.		1	3							
	matche	uld also argue that the benefit of long days in summer is always ed by long periods of darkness in winter; thus, the total amount										
		expressed by 12·365=4.380 hours.										
9		Interpret what is meant by expected value of a random variable. X is a random variable following a normal distribution with expected deviation σ . Give a probability taking into account these two characteristic values.	es μ a	nd σ.								
	c)	A continuous random variable Y defined over \mathbb{R} is such that $P(a \leq a)$	$\leq y \leq$	$b) = \int$	$\int_{a}^{b} f(z)$	dz.						
		Explain why $\int_{-\infty}^{+\infty} f(z) dz = 1.$										
	a)	The expected value of a random variable is the average of the values that this random variable takes weighted by their probabilities.	2									
	b)	$P(\mu - \sigma \le Y \le \mu + \sigma) \approx 0,68$ or $P(\mu - 2\sigma \le Y \le \mu + 2\sigma) \approx 0,95$ or $P(\mu - 3\sigma \le Y \le \mu + 3\sigma) \approx 0,997$	1									
					1	1						

	A tree diagram could also be used. Total = 50	14	21	9	6
	$=\frac{0.9\cdot0.1}{0.9\cdot0.1+0.05\cdot0.9}=\frac{0.1}{0.15}=\frac{10}{15}=\frac{2}{3}$		2		
	$P(D P) = \frac{P(P D) \cdot P(D)}{P(P)} = \frac{P(P D) \cdot P(D)}{P(P D) \cdot P(D) + P(P \overline{D}) \cdot P(\overline{D})}$		1		
	b) For example Bayes Theorem:				
	$P(P \overline{D}) = 0.05$ P(D) = 0.1	1		1	
	a) $P(P D) = 0.9$				
	 b) Use an appropriate method to determine the probability that a spo given that the test was positive. 	ortsma	n was	doped	,
	a) Present all necessary information in the correct mathematical nota			5 00510	ive.
	was clean. It can be assumed, that every 10 th sportsman at a certain event We want to find out the probability that a sportsman was indeed doped w	•		s nosit	ive
	recognises it in 90 cases. However, it also gives false alarm in 5% of the cas	es, wh	en the		
	• D: The sportsman was doped. After some test runs it was found out, that out of 100 blood samples with o	loning	tho m	achine	2
	• P: The test is positive.				
10	of all possible events, hence the value is 1. A new machine recognises doping in blood. Let there be the following two	events			
	a random variable defined on \mathbb{R} , this probability is therefore that				
	c) The integral $\int_{-\infty}^{+\infty} f(z)dz$ corresponds to $P(-\infty < Z < +\infty)$, the probability for Y to take all possible real values. Since Y denotes				