Part A	Points			
		KC	M	PS

1 A little hill on a playground can be modelled by a function f with $f(x)=-\frac{1}{3} x^{3}+x^{2}$, for $x>0$ where x is the distance in m and $f(x)$ is the height in m . The picture shows the graph f of this function.

Determine the height of this hill.
$f^{\prime}(x)=-x^{2}+2 x$
$f^{\prime}(x)=0$
$-x^{2}+2 x=0$
$x \cdot(-x+2)=0$
$x=0 \vee-x+2=0$
$x=0 \vee x=2$
$f(2)=-\frac{8}{3}+4=-\frac{8}{3}+\frac{12}{3}=\frac{4}{3} \approx 1.33$
The height is about 1.33 m .
1

1

| 1 | |
| :--- | :--- | :--- |
| | |
| 1 | |
| 1 | |
| | |

After some complaints about the lunch in the canteen, the manager claims that at most only 20\% of all 2,500 pupils are not satisfied with the lunch. The pupils committee thinks that it is more than 20% of the pupils. So, they ask a group of 40 randomly chosen pupils for their opinion.
a) Explain whether a left or a right sided test should be used to verify this hypothesis. Reason your answer.
b) State the null hypothesis H_{0} that could be used for a NHST test and give the alternative hypothesis H_{1}.
c) Determine the critical value k with the help of the following table if the significance level is set at 5% and interpret this value.

(2000

Give the names of these types of models and reason your answer.
Predict a date in the future when another maximum will be reached, when the numbers follow the models.
Since the numbers are oscillating with a period of 7 days, a periodic model can be used on a small-scale level. However, the numbers are altogether increasing on a large-scale level. To model this development, an exponential model could be used, because neither maxima nor minima fit a straight line.

The next maximum will be reached on 24 . October.

1	1	2	1

6 The number of bacteria in a petri dish is investigated in a laboratory. It turns out, that under certain conditions, the growth can be modelled by the function

$$
N(t)=10000 \cdot e^{\ln (1,03) \cdot t}
$$

where $N(t)$ is the number of bacteria after t days.
a) Give the number of bacteria at the beginning and the growth rate in percent.
b) Calculate the number of bacteria after the first day.
c) Explain, why this model cannot be used on a very large time scale.
a) The experiment starts with 10000 bacteria. Per day, the number increases by 3\%.
b) $N(1)=10000 \cdot 1,03=10000+300=10300$
c) At some stage, the petri dish is full of bacteria and there is no more space or nutrition, so the growth will stop.

2			
		2	

7 Indicate if the statement is true or false and reason your answer. Note that the points are only given if answer and reason are correct.
a. If the temperature $T(x)$ is constantly increasing, then $T^{\prime}(x)>0$.
b. All periodic models can be modelled by a sine function.
c. There are 9 different possibilities for 3 pupils to stand next to each other.
d. When some dice is rolled once, the expected value is 3.5 .
e. If 10 people are chosen out of a very large group, the number of females can be modelled by a binomial distribution, although a person cannot be chosen more than once.
a) True, because the if the temperature is increasing, the rate of chance is positive, and the rate of change is given by the derivative.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
b) False, because the red light of a traffic light be a periodic model. But the light is either on or off with no stages in between, so it cannot be modelled by a sine function. \\
c) False, because this example is without repetition. So, in fact there are 6 possibilities. \\
d) True, because \(E(X)=(1+2+3+4+5+6): 6=3.5\) \\
e) True, because the change in the probability is rather small, when we have a large group. Beside a constant probability, there can only be two options to choose from (male and female) and it must be a random choice.
\end{tabular} \& 1 \& 1
1 \& 1 \& \\
\hline \multirow[t]{2}{*}{8} \& \multicolumn{5}{|l|}{\begin{tabular}{l}
The daylength \(L(t)\) in hours on a certain location was recorded over one year. It can be modelled by the function
\[
L(t)=4 \cdot \sin \left(\frac{2 \pi}{365} x\right)+12
\] \\
where \(t\) is the time in days. \\
Interpret the outcome of \(\int_{0}^{365} L(t) d t\) and explain, why the result is equal to \(12 \cdot 365=4380\).
\end{tabular}} \\
\hline \& \begin{tabular}{l}
The total amount of daylight hours in one year can be calculated by the integral of the function between 0 and 365:
\[
\int_{0}^{365} L(t) \cdot d t
\] \\
The sine function is symmetrical, so the area above the \(x\)-axis has the same value as the area below the x-axis on the interval of one period. So, the integral would be zero. \\
Since \(L(t)\) is shifted by 12 units and we calculate the area under the graph for 365 days, the result is 12 . \(365=4380\). \\
One could also argue that the benefit of long days in summer is always matched by long periods of darkness in winter; thus, the total amount can be expressed by \(12 \cdot 365=4.380\) hours.
\end{tabular} \& \& 1 \& 3 \& 1 \\
\hline 9 \& \multicolumn{5}{|l|}{\begin{tabular}{l}
a) Interpret what is meant by expected value of a random variable. \\
b) \(X\) is a random variable following a normal distribution with expected value \(\mu\) and standard deviation \(\sigma\). \\
Give a probability taking into account these two characteristic values \(\mu\) and \(\sigma\). \\
c) A continuous random variable \(Y\) defined over \(\mathbb{R}\) is such that \(P(a \leq y \leq b)=\int_{a}^{b} f(z) d z\). Explain why \(\int_{-\infty}^{+\infty} f(z) d z=1\).
\end{tabular}} \\
\hline \& \begin{tabular}{l}
a) The expected value of a random variable is the average of the values that this random variable takes weighted by their probabilities. \\
b)
\[
\begin{aligned}
\& P(\mu-\sigma \leq Y \leq \mu+\sigma) \approx 0,68 \\
\& \text { or } P(\mu-2 \sigma \leq Y \leq \mu+2 \sigma) \approx 0,95 \\
\& \text { or } P(\mu-3 \sigma \leq Y \leq \mu+3 \sigma) \approx 0,997
\end{aligned}
\]
\end{tabular} \& 2

1 \& \& 1 \& 1 \\
\hline
\end{tabular}

	c) The integral $\int_{-\infty}^{+\infty} f(z) d z$ corresponds to $P(-\infty<Z<+\infty)$, the probability for Y to take all possible real values. Since Y denotes a random variable defined on \mathbb{R}, this probability is therefore that of all possible events, hence the value is 1.				
10	A new machine recognises doping in blood. Let there be the following two events - P : The test is positive. - D: The sportsman was doped. After some test runs it was found out, that out of 100 blood samples with doping, the machine recognises it in 90 cases. However, it also gives false alarm in 5% of the cases, when the sample was clean. It can be assumed, that every $10^{\text {th }}$ sportsman at a certain event is doped. We want to find out the probability that a sportsman was indeed doped when the test is positive. a) Present all necessary information in the correct mathematical notation. b) Use an appropriate method to determine the probability that a sportsman was doped, given that the test was positive.				
	a) $\begin{aligned} & P(P \mid D)=0.9 \\ & P(P \mid \bar{D})=0.05 \\ & P(D)=0.1 \end{aligned}$ b) For example Bayes Theorem: $\begin{aligned} P(D \mid P)= & \frac{P(P \mid D) \cdot P(D)}{P(P)}=\frac{P(P \mid D) \cdot P(D)}{P(P \mid D) \cdot P(D)+P(P \mid \bar{D}) \cdot P(\bar{D})} \\ & =\frac{0.9 \cdot 0.1}{0.9 \cdot 0.1+0.05 \cdot 0.9}=\frac{0.1}{0.15}=\frac{10}{15}=\frac{2}{3} \end{aligned}$ A tree diagram could also be used.	1	1 2	1	
	Total $=50$	14	21	9	6

