MATHEMATICS 3 PERIODS
 PART B

DATE: DD/MM/YYYY

DURATION OF THE EXAMINATION: 120 minutes

EXAMINATION WITH TECHNOLOGICAL TOOL

AUTHORISED MATERIAL:

Technological tool

Formula Booklet

Notes:

- As this is a sample paper the cover page is likely to change.
- This sample paper should only be used to see how questions can be created from the syllabus focusing on competences rather than strictly on content.
- The keywords found in the syllabus are highlighted in bold to help the candidate see which competency the question is focusing on and thus helping in answering the question.

PART B

Question 1/2	Marks

In 2002 in Luxembourg the average temperatures per month have been recorded. It is known that January 2002 was the coldest month measured as $1,6^{\circ} \mathrm{C}$ and the highest average temperature was measured in June 2002 as $18,6^{\circ} \mathrm{C}$.
a) Justify, that in Europe the monthly average temperatures for some consecutive years can be modelled with a periodic model.
b) Give the amplitude and the period of this model.
c) Determine the parameters a, b, c and d in the model of the type:

$$
T(x)=a \cdot \sin (b \cdot(x-c))+d
$$

that describes the given data where T is the average Temperature and x is the month, starting with $x=1$ for January 2002.

On one specific day in March 2002 the rainfall was observed. The rainfall on that day can be modelled by the function

$$
R(t)=0.002 t^{3}-0.064 t^{2}+0.512 t, 0 \leq t \leq 24
$$

where $R(t)$ is the rate of rainfall in mm / h and t is the time in hours.
d) Describe, using a short text description, this day in terms of rainfall. Your answer
should focus on the times with the most and the least rainfall.

An empty glass cylinder was placed outside during this day to help see how much rain had fallen.
e) Sketch the graph of a function, that shows the height of water in this glass cylinder.
f) Calculate the total amount of rain on that day in mm .

Question 1/2 continued
The year 2002 in Luxembourg turned out to have 195 rainy days and 170 days without rain.
It can be assumed, that all days have the same chance of being a rainy day. One year later,
meteorologists want to investigate, if there was more rain in 2003. Unfortunately, some
data were lost, so they took only a small sample of 30 consecutive days.

g) Calculate the probability that it rains on a random day, if we assume, that the total number of rainy days in both years remains constant and the rainy days are equally
The year 2002 in Luxembourg turned out to have 195 rainy days and 170 days without rain. It can be assumed, that all days have the same chance of being a rainy day. One year later, meteorologists want to investigate, if there was more rain in 2003. Unfortunately, some data were lost, so they took only a small sample of 30 consecutive days. distributed over the whole year.
h) Use a NHST procedure to find out how many days it must rain so the meteorologists can say that there was more rain in 2003 compared to 2002 when the significance level is at 5%.

The following diagram shows the maximum temperature and the number of injured people caused by traffic accidents in Berlin on a long-term base.

i) Describe the correlation between the two values.
j) Explain, why the number of injured people possibly correlates in such a way with the maximum temperature.

$$
\text { daily maximum temperature in }{ }^{\circ} \mathrm{C}^{\circ}
$$

PART B

Question 2/2
In a Covid-19 testing station, 19 people with symptoms were tested on a specific day and 6 of them had a positive result. On the same day, 87 people without symptoms were tested of which 85 were tested negative. a) Show that the probability of getting a positive result depends on whether a person has symptoms or not..

To protect personal data, the test probes are labelled with a code, that contains 2 letters (out of an alphabet with 26 letters) and 4 digits ($0-9$). The same letters and digits may be chosen more than once.
b) Calculate the total number of different codes, that can be created by this system.

After several months, statistics have shown, that 1.7% of the people without symptoms are tested positive. A company, with 20 employees (all without symptoms), instructs everyone to get tested.
c) Give two assumptions, that need to be made to model this situation with a

[^0] has symptoms or not.
binomial distribution.
d) Calculate the probability, that at least one of the employees is tested positive.
regression model.
g) Give the equations that describe the two regression models in part f.
h) Explain, why it is so difficult to decide, if the spread out of the virus is best modelled with a linear or an exponential model in this early stage.

 Question 2/2 continued

On day 16, there were 670 registered cases of COVID-19 in Luxembourg.
i) Calculate the predicted number of infected people on day 16 with model A and model B and compare it with the true number. Decide, which model obviously works better for this situation and reason your answer.

The following diagram shows the graph of the total number of registered infections for the first 4 weeks in Luxembourg.

The curve can be modelled by the function

$$
C(t)=\frac{3404}{1+193 \cdot e^{-0.233 \cdot t}}
$$

k) Determine the day with the highest infection rate by calculation.

[^0]:

