Part B Answers

Part B1	Marks			
		KC	M	PS

In 2002 in Luxembourg the average temperatures per month have been recorded. It is known that January 2002 was the coldest month with $1,6^{\circ} \mathrm{C}$ and the highest average temperature was measured in June 2002 with $18,6^{\circ} \mathrm{C}$.
a) Justify, that in Europe the monthly average temperatures for some consecutive years can be modelled with a periodic model.
The temperatures rise and fall within one year and this procedure repeats every year. Although the temperatures are not the same every year, on average the summer months are warm, and the winter months are cold.
b) Give the amplitude and the period of this model.

Amplitude $a=8,5$
Period $T=12$
Determine the parameters a, b, c and d in the model of the type
$\quad T(x)=a \cdot \sin (b \cdot(x-c))+d$

that describes the given data where T is the average Temperature and x is the month, starting with $x=1$ for January 2002.

On one specific day in March 2002 the rainfall was observed. The rainfall on that day can be modelled by the function

$$
R(t)=0.002 t^{3}-0.064 t^{2}+0.512 t, 0 \leq t \leq 24
$$

where $R(\mathrm{t})$ is the rate of rainfall in mm / h and t is the time in hours.
d) Describe, using a short text description, this day in terms of rainfall. Your answer should focus on the times with the most and the least rainfall.
It starts raining at midnight and the rainfall is reaching a peak between 5 and 6 o'clock. The rain gets less until 16 o'clock, when it stops for a little while. In the afternoon, the rain gets more again until it reaches a maximum at midnight.

An empty glass cylinder was placed outside during this day to help see how much rain had fallen.
e) Sketch the graph of a function, that shows the height of water in a glass cylinder, that was placed outside and empty before.

The graph shows the derivate function of $R(t)$.
f) Calculate the total amount of rain on that day in mm .

$$
\int_{0}^{24} R(t)=18.43
$$

About 18.4 mm of rain came down on that day.

The following diagram shows the maximum temperature and the number of injured people caused by traffic accidents in Berlin on a long-term base.

i)	Describe the correlation between the two values.				
	The higher the Temperature, the more injured people.				1
j)	Explain, why the number of injured people possibly correlates in such a way with the maximum temperature.				
	When it is warm, more people go outside, so the chance to be involved in a car accident is higher as if people stay at home.				1
	Total $=25$	6	8	7	4

Part B2	Marks			
		KC	M	PS

In a Covid-19 test station, 19 people with symptoms were tested on a specific day and 6 of them had a positive result. On the same day, 87 people without symptoms were tested of which 85 were tested negative.
a) Show that the probability of getting a positive result depends on whether a person has symptoms or not.

Consider the following events:
S: "the person has symptoms"
P : "the person is positive"
$P(P)=\frac{8}{106}$ and $P(P \mid S)=\frac{6}{19} . P(P) \neq P(P \mid S)$ so, the probability of getting a positive result depends on whether a person has symptoms or not.

2

To protect personal data, the test probes are labelled with a code, that contains 2 letters (out of an alphabet with 26 letters) and 4 digits ($0-9$). The same letters and digits may be chosen more than once.
b) Calculate the total number of different codes, that can be created by this system.

The total number of different codes is $26^{2} \cdot 10^{4}=6760000$.	1	1

After some months, statistics have shown, that 1.7% of the people without symptoms are tested positive. A company with 20 employees (all without symptoms) lets everybody get tested.
c) Give two assumptions, that need to be made to model this situation with a binomial distribution.

- For the binomial distribution, all trials must be independent. So, we must assume, that the employees have no possibility to infect each other.
- We also know that there some people (certain age group or health problems) are more likely to get infected. So, we must assume, that the chance of infection is the same for all employees.
- Moreover, that we must assume, that the population of the statistic is a very large number of people.
- We must assume, that the tests are reliable.
- We must assume, that no employee has been vaccinated.
- We must assume, that none of the employees has had Covid-19 before, so that he could be immune now.

d) Calculate the probability, that at least one of the employees is tested positive.

Calculate the probability that none of the employees is tested positive:
$P(X=0)=B_{200 ; 0,017}(0)=\binom{200}{0} \cdot 0,017^{0} \cdot 0,983^{200}$
So $P(X \geq 1)=1-P(X=0)=1-0,017^{0} \cdot 0,983^{200}$, which gives $P(X \geq 1) \approx 0,968$

2	1	

Assuming that the situation can be modelled by a binomial distribution given by the formula $B(84 ; 0,02 ; k)=\binom{84}{k} \cdot 0.02^{k} \cdot 0.98^{84-k}$.
e) Interpret the values $84,0.02$ and 0.98 in the given context.

84 is the total number of employees, 0.02 is the probability that an employee is tested positive and 0.98 is the complement, i.e. the probability that an employee is not tested positive.

On March 5 in 2020 a man who returned from Italy is the first person in Luxembourg who was tested positive on COVID-19. So, this day is marked as day 0 in the statistic. The following table shows the total number of registered infected people in Luxembourg in the days after the first case appeared.

Day	0	1	2	3	4	5	6
Number	1	3	4	5	5	7	7

f) Draw a scatter graph of these values together with a linear and an exponential regression model.

