Mathematics Syllabus 3 Periods

Example assessment Baccalaureate

On the following pages, there is first a full example of a BAC examination, accompanied with the answers.

Solutions to part A

Question A5			
Alper uses a GPS average speed meas	suring device when driving	g. Alper drives	
on a motorway restricted to 120km/h. The device measured his average speed to			
be 110 km/h.			
One week later he receives a speeding	g fine from the above journ	ney where he	
was caught by a properly calibrated sp	beed radar to be going mor	re than 130km/h.	
Discuss why Alper thought he was for	llowing the law and why t	he speed radar	5
caught him speeding.			5
Use examples and full reasoning, for	example by drawing a grap	ph and using the	
vocabulary studied in class.			
Solution:			
Solution (Way more than needed)			
There is a difference between instanta	neous speed, which the Sp	peed Radar uses,	
and average speed that his GPS devic	e calculates.		
All that average speed is calculating i	s the total distance driven	over a particular	
time. Therefore in one hour he travell	ed 110 km. What average	speed does not	
tell you is a speed at a particular insta	nt.		
Compare the following:	0.1.4		
Although the actual speed	Voma		
function and the average speed	101	average	
function are both covering a	1(0	speed	
distance of 110km in 1 hour the		1.1	
actual speed is not assumed to be		actual	
constant which is exactly what	X	pled	
the average speed suggests.			
	//		
The highlighted parts of the	V	>	
actual function graph show the	D	1 time	
points when the speed was greater		(hews)	
than the average speed and thus			
potentially when Alper was caught sp	eeding.		
The gradient of the average speed is c	onstant at 110 km/h. How	ever the actual	
speed appears to be modelled on a cul	bic function which means	that the gradient	

(speed) is constantly changing.

To determine the average speed we just need to points and form a straight line to determine the instantaneous speed we must draw a tangent and calculate its gradient or we can differentiate the speed function and use the time at that particular instant to calculate the speed. If the two points to create the average speed have too large a difference in their times then more error is introduced. To have an instantaneous speed the difference between the two times must be minimised.

I propose that Alper sets his GPS device to measure average speed for every minute rather than the whole journey to avoid being caught!

Question A7	
In a region of Europe, owls hunt voles (field mice). The number of owls and voles has	
been studied since 2010. We begin to study the evolution of the number of each of its	
species in 2010. The number of voles is given by the function below:	
$f(t) = 1500 \sin(bt) + 2000$	
with \boldsymbol{t} the number of years since 2010 and \boldsymbol{b} a real number.	
The number of owls is given by the following function:	
$g(t) = 800 \sin\left(\frac{4\pi}{5}(t-0.9)\right) + 1500$	
with t still the number of years since 2010.	
The graphs of the functions \boldsymbol{f} and \boldsymbol{g} are	
Number of animals	
with the dotted curve showing the number of owls and the continuous line showing the	1
number of voles.	
	1.5
a) Determine the period of f and hence determine the value of the	
parameter b .	1.5
b) Determine the coordinates of point A (to one decimal place for t) and	1
interpret the outcome in this context.	
c) Determine in which year (after 2020) the number of owls will peak again and	
justify your answer.	
d) State what happens when the number of prey decreases	
Solution:	
a) 2 periods take 5 years, so the period of f is 2.5 years.	
$b = \frac{2\pi}{p} = \frac{2\pi}{2.5} = \frac{4\pi}{5}$	
b) Reading from graph gives $A(1.2;2100)$. So,1.2 years after 2010 there	

	are the same amount of owls and voles.	
c)	In 2020, t=10, there is a maximum for $t = 10 + \frac{2.5}{4} = 10.625$. The	
	next maximum would be 2.5 years later, so approximately 13.1 years	
	after 2010 so in 2023.	
d)	If the number of prey decreases, the number of owls will decrease	
	shortly after too, but there is a delay.	
Questi	ion A8	
In a sc	shool teachers claim that more than 20% of the pupils arrive late for class.	
a)	State the null hypothesis H_0 and the alternative hypothesis H_1 from the	
	teachers' point of view. Explain your answer.	3
The pu	upils claim that the teachers exaggerate and that only a maximum of 10%	
of the	pupils arrive late for class.	
b)	State the null hypothesis H_0 and the alternative hypothesis H_1 in case	2
	the students would set up the investigation. Explain your answer.	
G 1 .*		
Solutio	<u>on</u>	
Let p	be the proportion of students who arrive late.	
a)	$H_0: p = 0.2$	
	<i>H</i> ₁ : <i>p</i> >0.2	
b)	$H_0: p = 0.1$	
	<i>H</i> ₁ : <i>p</i> <0.1	

Question A9						
Consider a rat	ndom variable	e X. The tabl	e below show	the probabili	ty	
distribution o	f X:					
X _i	0	1	2	3	4	
<i>p</i> _i	2 <i>a</i>	а	0.1	0.3	а	
Calculate the Solution It is a probability $2a$ $E(X) = x_1$	Calculate the expected value of X. Solution It is a probability distribution so all probabilities should add up to 1: 2a+a+0.1+0.3+a=14a+0.4=14a=0.6a=0.15 $E(X)=x_1 \cdot p_1 + x_2 \cdot p_2 + + x_5 \cdot p_5 0 \cdot 2a+1 \cdot a+2 \cdot 0.1+3 \cdot 0.3+4 \cdot a$ $5a+0.2+0.95 \cdot 0.15+1.11.85$				5	

Question A10	
On a trip, you have bought some bread but forgot about it. Four days later you	
have found it again at the bottom of your bag, but mould is developing on some	
parts. The mould develops according to the following formula:	
$P(t) = 0.5 \cdot e^{\ln(1.5)t}$	
with P the percentage of bread covered and t the time in days, with $t=0$ four	
days after buying the bread.	
a) This formula can also be written in another form.	3
Choose the right form $(Q_1, Q_2, Q_3 \text{ or } Q_4)$ and justify your answer.	
$Q_1(t) = 0.5 \cdot \ln(1.5)^t$ $Q_2(t) = 1.5 \cdot 0.5^t$	2
$Q_{3}(t) = 0.5 \cdot 1.5^{t}$ $Q_{4}(t) = 1.5 \cdot \ln(0.5)^{t}$	2
b) Calculate what percentage of the bread is covered in mould, 5 days	
after buying the bread	
Solution:	
a) $P(t) = 0.5 \cdot e^{\ln(1.5)t} = 0.5 \cdot (e^{\ln(1.5)})^t = 0.5 \cdot 1.5^t = Q_3(t)$	
therefore Q_3 is an alternative form for P .	
b) 5 days after buying à $t=1$, so $P(1)=0.5 \cdot 1.5=0.75$	
0.75% of the bread is covered, 5 days after buying it.	