Mathematics Syllabus 3 Periods

Example assessment Baccalaureate

On the following pages, there is first a full example of a BAC examination, accompanied with the answers.

Part B – device allowed, no CAS

Question B1						pa	age 1/3	25
Elections: Representing	a Popul	lation						
The S7 year group at a E	Europear	n School	l, contain	ning 150) pupils,	is to be		
represented on the Pupil	's Com	nittee fo	or their s	chool. T	here are	to be 5	pupils	
from this year group cho	sen to r	epresent	the yea	r. Of the	e 150 pu	pils 60 a	are	
male.								
a) Calculate the protein this year group.	obability	y at choo	osing on	e male p	oupil at r	andom 1	from	1
To better represent the p	upil por	oulation	a questi	onnaire	is given	to each		
member of the S7 year g			-		_		neir	
lunch at the canteen and								
pupils take their lunch at					11 (
								3
b) Determine the p	robabili	ty that g	iven a n	on-male	pupil is	chosen	they	
have their lunch	at the m	all.						
At the same school all ye	ear grou	ps are p	roportio	nally rep	oresente	d based	on their	
year group size. In the P	upils' C	ommitte	ee there	are the f	ollowing	g membe	ers:	
Year group	S1	S2	S3	S4	S5	S6	S7	
Number	4	6	4	5	4	6	5	
			l		l			2
c) From the Pupils'	Commi	ttee the	y need to	select a	a group	of 5 pup	ils to	3
represent them at	t a Euroj	pean Scl	hools co	nference	e.			
Determine how	many di	fferent	ways the	ere are o	f selectii	ng 3 pup	oils	
from S7 and 2 pu	ipils fro	m S6 fro	om the P	upils' C	ommitte	ee.		

Question B1 (continued) page 2/3	
 d) The lower school (S1 to S3) are planning an activity. 3 members of the Pupils' Committee from S1, S2 and S3 form a group to plan this activity. Calculate the probability that if the members are selected at random the 3 members come from different year groups. 	5
A large country is having its General Election. It is known that 30% of the population will vote for the Turquoise Party. e) Justify why the expected value may differ from the actual value.	2
A group of 20 people from the population are chosen at random. f) From this group 5 are asked who they will vote for. Determine the probability that at least 2 of them will not vote for the Turquoise Party.	6

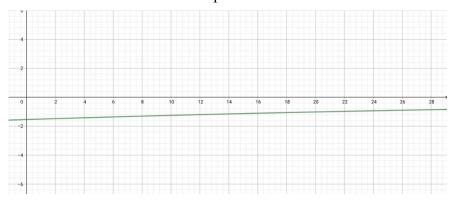
page 3/3

In one particular country the voter turnout has been seen to be following an exponential model. The data for the voter turnout is:

Year	1989	1994	1999	2004	2009
Turnout %	74	67	60	54	49

In the following question you will be asked to determine a suitable model and apply this model.

g) **Justify** fully which of the following would be the most suitable model to apply to this data and then **determine** the year when the rate at which the turnout decreases is less than -0.9% between elections years.

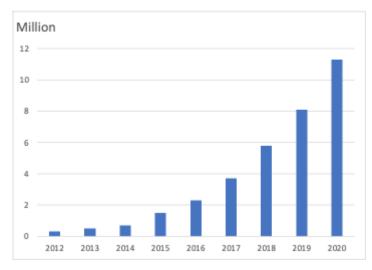

5

A:
$$f(x) = 74.056 \cdot (0.979411)^x$$

B:
$$f(x) = 0.979411 x + 74.056$$

C:
$$f(x) = (0.979411)^x$$

You may find the following useful in your answer. The following shows the derivative function of the exponential model.


Question B2 page 1/3	25
Dinner problems	
Part I, II and III can be answered independent of one another	
Part I	
21 friends decide to meet up for dinner. Because of traffic, the probability of a	
friend arriving on time is 1/3. It is assumed that each friend arrives on their	
own.	
	4
a) Calculate the probability of exactly 12 friends out of 21 arriving on	
time for dinner.	
b) These friends reunite again many times in the same conditions.	3
Determine the average number of friends present on time at these	3
events.	

Question B2 page	2/3
Part II	
The analysis of the road speed databases shows the big variability in the ti	me
distribution of the movement of cars within a big agglomeration. The follow	owing
graphs show this variability of distribution of time for the motorway. Each	ı of
these graphs correspond to the time it takes to travel 20 km at two different	nt
hours of the day.	
0.14	
0.12 Situation 1	
0.1	
0.08	
0.06 Situation 2	
0.04	
0.02	
5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75	-
travel time in minutes	1
c) State the type of the above distributions.	2
d) Determine which situation corresponds to the peak hours and exp	lain
your answer.	3
e) Models are used to predict future events and the situations above cou	.ld be
used as such.	
Determine which situation (Situation 1 or Situation 2) will give th	
most reliable prediction for your travel time and justify your answ	er. 3
	41
f) In Situation 1, the probability that the time of the travel takes more	; ınan
25 minutes is 0.048 (rounded to 3 decimal places).	

Find the probability that the travel time is between 15 and 25 minutes.

Part III

At the dinner, a discussion takes place about electric cars and how they are developed. The diagram below shows the evolution of the number of electric cars in the world from 2010 to 2020.

Source: www.iea.org

g) One of the friends, using an application, represents the situation by the function:

 $f(x)=0,275 x^2-2,165 x+5,415$ with x the number of years since 2010 and f(x) the number of electric cars in millions.

Determine whether the model is suitable for the years 2017 to 2020. **Justify** your answer.

3

3

3

h) Calculate f'(9) and interpret the result.

i) The title of an article from the same source says:
 "Between 145 and 230 million electric vehicles in the world in 2030".
 Argue whether the formula from question g matches the title.